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ABSTRACT
We define some interesting incentive issues that arise in the
management of virtual infrastructures. We demonstrate that
participants’ decisions about the quantities of infrastructure
that they will choose to contribute to a virtual organization
can be greatly affected by the resource sharing policy that
they know will be deployed when the system operates. Un-
less this policy is well-designed, agents will attempt to free-
ride by contributing less resource than is desirable. What
is new is our formulation of models for designing optimal
management policies, an analysis that demonstrates the in-
adequacy of simple sharing policies, and proposals for some
better ones. We find an optimal policy in a limit as the num-
ber of participants becomes large. We learn that simple poli-
cies may be far from optimal and that efficient policy design
is not trivial; policy parameters play important role in opti-
mizing the efficiency of virtual facility formation.

1. INTRODUCTION
Infrastructure virtualization is a powerful tool to-

wards the creation of a global computing and communi-
cation infrastructure. It allows organizations to cooper-
ate and contribute physical resources to the creation of
a virtual slice of a network or of a computing and stor-
age facility like a computational Grid. This virtual in-
frastructure is shared by the participating organizations
and supports specific services and applications or scien-
tific experiments. Although virtualization technology
has made significant progress in this direction, there re-
main many interesting and unanswered economic ques-
tions about the business models that can make such
virtual infrastructures viable. In particular, what are
the incentives for an organization to contribute (virtu-
alized) resources to the common slice? How should the
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costs be shared? How should the new virtual facility be
shared among its contributors?

In this paper we make the fundamental assumption
that the virtual infrastructure is shared and generates
economic value to the participants that contribute to
its formation. We assume that each participant will
make use of the shared virtual facility by running ex-
periments or applications, possibly for profit. We ad-
dress the question of how to efficiently form and share
such a virtual infrastructure amongst a number of par-
ticipants, each of whom has some private information
about the value it places upon being allocated a quan-
tity of resources. Each participant would like to obtain
for himself as much as possible of the shared infrastruc-
ture (or service), while contributing minimally to the
costs of its formation and maintenance. The result is
that the participants individual aims are not aligned
with overall system efficiency. This is an important ob-
servation and suggests that unless the appropriate in-
centives are in place, the economic performance of the
resulting system may be greatly reduced. This raises
the issue of infrastructure management.

How should a virtualized infrastructure be managed?
Since such an infrastructure is shared, there is unavoid-
able conflict between participants in respect of the sizes
of shares of it they obtain each time they need to use
it. What policy should one use to manage such con-
flicts? How does such a policy affect the incentives
that the participants have for releasing resources to the
common slice? Viewing this virtualized infrastructure
as a common resource pool, what should be the rules
for accessing it? It could be an egalitarian policy that
simply provides each participant with an equal share
of the resources of the common pool; or it could be
a more sophisticated policy that makes use of infor-
mation that the participants provide about the values
they place on obtaining resources. It should also pro-
vide a means of covering the cost of the facility. One
way to cover the cost of building a facility is to re-
quire participants to pay fees. Another way is to add
together actual resources that participants contribute
instead of monetary payments; this is a more practical
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model for virtualized infrastructures where participants
decide on how many physical resources to release on a
virtual infrastructure slice, and the sum of these contri-
butions defines the size of the actual slice. In this case
we might operate a policy in which we ask each partic-
ipant to choose for himself a quantity of resource that
he will contribute to a shared pool of resources (the vir-
tualized infrastructure slice), and then say that at all
future instants the resource pool will be shared amongst
any participants who wish to draw on it in proportion
to the sizes of their contributions. The participant who
contributes more will receive more. But might the sys-
tem work better if the resource is shared in proportion
to the squares of their contributions? It is questions like
this that we address.

The problem of policy design is certainly not trivial,
as is observed in [3], [7], [5]. As we see in what fol-
lows, the choice of sharing policy will affect the way
in which agents will choose the sizes of their contribu-
tions to the shared resource pool. Simple policies may
perform very badly and induce a great amount of free
riding (i.e., they can encourage agents to seek ‘some-
thing for nothing’). There is recent work in [2], [11]
regarding the definition of accounting requirements for
Grids, which in turn would influence the types of poli-
cies that can be implemented. In this paper we look
at a number of models, making different assumptions
about the parameters that can be measured, and ob-
tain optimal policies for each model. For instance, the
frequency with which a participant becomes active and
requests resources may be an important parameter. If
this parameter can be measured, then we can incentivize
a participant to declare it truthfully by threatening to
fine him if measurements of his his parameter do not
match up with what he had declared. Other param-
eters may be known only to a participant and cannot
be measured. Then the form of the policy itself can
be designed to incentivize truthful revelation. This is
done indirectly, by offering each participant a choice of
options and then observing which of them he chooses.

The contribution of this paper is to define some in-
teresting incentive issues that are related to the man-
agement of the virtual infrastructures and to business
modeling. What is new is the formulation of the mod-
els for designing optimal management policies and their
connection with optimal auction design, a rigorous anal-
ysis that demonstrates the inadequacy of simple sharing
rules, and the proposition of specific policies like exten-
sions of proportional sharing and minimum contribution
schemes. We derive optimal policies in a limit in which
the number of participants, n, becomes large, and com-
pare the various approaches. The lessons to learnt are
that simple policies may be far from optimal and that
efficient policy design should not be trivialized; policy
parameters play important role in the final outcome of

virtual facility formation.
We must stress that the mathematics involved in con-

structing optimal policies in the context of incomplete
information (the participants may not be truthfull about
their actual needs in using the infrastructure) are very
elaborate and rarely lead to simple analytic solutions
even in the case of simple models with few parame-
ters. For instance, we suppose in what follows that
the size of the virtual facility is characterized by a one-
dimensional parameter; this is a fairly good model for
computational facilities, but is less good for virtualized
networks. Hence our results are not intended to be fully
realistic. However, they demonstrate general features
that good policies should have. More work is needed
to translate these to something practical and directly
implementable. This work should refine the results in
this paper and investigate their practical implementa-
tion, i.e, impact on job scheduling policies, see [6] and
[15], and the incorporation of other important parame-
ters that were left out in our modelling. In the rest of
this paper we purposefully focus our discussions upon
computational grids. These are simpler to treat than
other infrastructures because computation and storage
seem easier to commoditize. We continue with a dis-
cussion of the virtues of virtualization and the resulting
economic issues we address in this work.

1.1 Virtual resource sharing
Grid technology is about ‘resource virtualization’ [13],

i.e., about providing a layer of abstraction between the
physical computing resources and the applications that
use them. This commoditizes computation since it does
not matter either on what particular hardware an ap-
plication runs, or where that hardware is physically lo-
cated. An application requires only that it is run on a
specific number and type of virtual resource units, the
virtual machines, irrespectively on how these are im-
plemented and where they are physically located. This
aggregation of computing and software resources offers
linear scalability: adding a virtual resource in some or-
ganization results in increasing the total resource pool
of the virtual infrastructure. It also allows for large
economies of scale and scope since few large data cen-
ters can serve many individual organisations and reduce
the cost of IT per organization. Other positive aspects
include the flexible creation of shared infrastructures in
short time scales that can serve specific purposes like
supporting large experiments, solving specific compu-
tational problems, etc., and security (although the last
aspect of these is not a concern here). This is the driv-
ing force behind cloud computing and enables the new
‘Internet of Services’ vision in which software services
are offered by competitive providers that charge per use
and are run somewhere on the shared computing infras-
tructure formed by other infrastructure providers.
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Since organizations have computational demands that
fluctuate over time and scope, there can be a great over-
all cost reduction when organizations obtain resources
from a central shared facility (be it actual or virtual) as
compared to each organization building its own smaller
facility. A shared facility will have a size near the sum of
the average resource requirements of the participants,
whereas if they individually install capacity the sum
of the sizes of their installations will be near the sum
of their peak requirements. In addition to the savings
in hardware there can be savings in software since the
same programs can be reused by the participants in this
virtual organization. Note, however, that the savings
occurs because demand for computation fluctuates; if
demand were constant, then no statistical multiplexing
would take place and the advantage of using a shared
facility would be greatly reduced.

1.2 Economic issues
Suppose that n organizations are considering their

participation in a virtual facility which provides a pool
of shared resource. Our model allows each organiza-
tion to value resources usage differently. Specifically,
we suppose that if organization i obtains a quantity of
resource x it obtains benefit θiu(x). The utility function
u(x) is the same for all participating organizations; we
suppose it is increasing and concave. However, the value
of the parameter θi is known only by organization i; we
say that it is this organization’s ‘private information’.
The parameter θi captures the importance that orga-
nization i places on obtaining resource. The economic
problem for the facility designer is to efficiently share
the virtual resources in a context that each organization
is behaving strategically in order maximize its own net
benefit. Key decisions must be taken about (a) how to
incentivize organizations to participate and contribute
virtual resources, (b) what fees, or actual amounts of
resource, the participants should be required to con-
tribute, (c) how resources should be allocated when
more than a single organization wants to draw on the
shared pool simultaneously, and (d) how the cost of
running the facility should be shared. In this work we
address the above issues in the context of the business
model of collaborative grids. These are shared facilities
that are managed with the objective of maximizing the
sum of the total benefit obtained by the participants
who share the facility; this is in contrast to maximizing
profit of individuals or of the facility manager.

One possible approach to sharing computational re-
sources is to form an open market for computation, see
[16], [14]. In this market providers (sellers) and con-
sumers (buyers) of computing resources go to trade.
The market may operate similarly to the stock market,
except that commodities are perishable. For instance,
an organization might go to the market and say that it

needs 10 virtual machines of a certain type for 8 hours
and state that the maximum price it is willing to pay is
100 euros. This corresponds to a ‘bid’ in this market.
Similarly, an organization can post in the market its ex-
cess computing resources with an ‘ask’ of the minimum
price at which it is willing to sell. The market matches
the asks and bids, just as in the stock market, and allo-
cates resources accordingly. If this market is relatively
competitive, then it will also result in efficient allocation
of resources, see [18], [19]. Organizations will base their
decision on how much infrastructure to self-procure and
how much to get from the market based on the equilib-
rium market price and on the statistics of their demand
for computation. Alternatively, large sellers/buyers of
capacity might participate in specialized auctions (like
in e-Bay) to sell/buy resource contracts for immediate
or future use.

Our approach differs from the above, but is comple-
mentary. It is not based on a competitive market; rather
it regulates the system by setting rules to which partic-
ipants must abide and a policy for sharing the resource
pool. It is appropriate when a given set of organizations

decide to collaborate over a long period of time, to do
one of the following.

(i) share the cost of running a given facility;

(ii) create a new shared virtual facility, by each con-
tributing actual computing resources (or by providing
finance for purchasing and maintaining those resources).

Case (ii) is common in large e-science projects, e.g.,
[1], [4], [9], [12], and in other virtual facility building
projects like OneLab [8] and PlanetLab [10]. This ap-
proach may be preferred to the free market approach
when organizations prefer long-run predictable contracts
and to make contributions in kind (infrastructure), rather
than to participate in dynamic markets in which prices
fluctuate and yearly expenses are not predictable.

Our approach for problems of types (i) and (ii) is
based on theory for optimal auctions [20]. We design
an schemes in which agents’ bids determine resource-
sharing contracts. These contracts specify what quan-
tities of resource each agent will obtain in each possible
circumstance that some subset of agents wish to draw
on the resource pool simultaneously. The parameters
of the contracts become finalized only after all agents
have made their bids. The auction is engineered so that
each participant is incentivized to bid truthfully, i.e.,
to reveal the true values of his personal parameter θi.
The resulting contracts provide optimal resource shar-
ing, subject to a constraint that the fees paid by the
agents will cover the cost of the system. In this model
the rules of running the system are defined as functions
of the bids of of the participants. Thus we are engaged
in what is known as ‘mechanism design’ [21]. We are
effectively seeking to design rules for a game (in which
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the agents are invited to play strategically) such that
at the resulting Nash equilibrium of this game the eco-
nomic efficiency is maximized, subject to covering the
cost of running the facility. Mathematical details om-
mitted here can be found in the full paper, [17].

2. THE FULL INFORMATION CASE
We begin with a problem of efficiently sharing a fixed

quantity of computing resource Q amongst a set of n
agents. Here Q corresponds to the total size of the
shared infrastructure.

Suppose that the daily cost of operating the system is
c(Q), a known function of its size, and for simplicity let
c(Q) = Q. Time proceeds in discrete epochs, 1, 2, . . . ,
which for convenience we will call days. If on day t an
agent i is allocated resource xi then he obtains utility
(or can generate revenue) of θi,tu(xi). On day t, the
value of θi,t is realized as follows. With known proba-
bility αi agent i contends for resources (is active) and
then θi,t = θi, else θi,t = 0. The value of θi captures
the actual value of computation for agent i and is cho-
sen once at the start from a probability distribution Fi.
The types of the agents, as specified by their α1, . . . , αn

and distributions F1, . . . , Fn, are public knowledge, i.e.,
they are known to all agents and the system designer.
For instance (α1, F1) might be parameters that are typ-
ically associated with a certain size of the participating
organization. The actual value of θi that characterizes
a given agent is known only to agent i, as his private

information. This is in contrast to the value of αi which
is assumed known since it can be monitored objectively
by the system. Note that the ‘system designer’ of our
business model may be a fictitious entity. Its function
is to represent the incentives of the consortium of the
participants as a whole. In practice it could be some
common authority that is responsible for managing the
shared infrastructure (perhaps a piece of software) after
agreeing an a set of policies by the participants.

In the ‘full information’ scenario we suppose that the
vector θ = (θ1, . . . , θn) and so the vector (θ1,t, . . . , θn,t)
is fully known to the system designer at each t. Knowing
it, he can then maximize the social welfare (total system
benefit), defined as

∑n

i=1 θi,tu(xi) , (1)

by simply computing the optimal allocation vector

x(θ) =
(

x1(θ), . . . , xn(θ)
)

= arg max
x1,...,xn

s.t.
∑

n
i=1

xi≤Q

{

∑n

i=1 θi,tu(xi)
}

. (2)

That is, x1, . . . , xn maximizes (1) under the constraint
∑

i xi ≤ Q. It generates benefit θi,tu(xi) for partici-
pant i. If the facility is shared for a single epoch t, then
assuming that

∑

i θi,tu(xi) > c(Q) = Q, the system de-

signer can ask for payments qi such that qi ≤ θi,tu(xi)
and

∑

i qi = Q. If the same set of agents share the
facility continuously, then we compute the optimal al-
location at each time t from (2) but ask agents to make
constant payments at each t. We simply require that
these satisfy, for each i,

E [θi,tu(xi(θ))] − qi ≥ 0 , (3)

and cover the cost, i.e.,
∑

i qi = Q. In (3) the expected
net benefit of participant i is his long run average ben-
efit when for each t we use the allocation computed in
(2). If (3) cannot be satisfied, then there is simply no
solution to our problem that can cover the specific cost
Q. Observe that since payments are constant over time,
they can be made ‘in kind’, i.e., by agent i contributing
a quantity qi of the virtual resources that comprise the
shared infrastructure Q.

The system designer chooses Q to maximize the social
welfare, taking into account that the size of the system
is not fixed and comes at a cost, i.e., he finds

Q∗ = arg max
Q

{

E
[

∑

i θi,tu(xi)
]

− c(Q)
}

, (4)

where the allocations are computed using (2) and hence
are also functions of Q.

The above is called the ‘first-best’ solution since it
achieves the highest possible economic efficiency. Un-
fortunately, in practice the θi are private information
of the agents and they will act strategically when asked
to reveal them. An agent might choose to declare a
value of θi that is greater than its true value in order
to obtain a larger resource share. So in practice a game
takes place amongst the agents. Agent i declares θi

and his payoff is his expected net benefit. As the de-
signer of the rules of the game we wish to arrange that
the Nash Equilibrium of this game is a point that is
as economically efficient as possible. This amounts to
finding appropriate functions by which to decide pay-
ments q(θ) = (q1(θ), . . . , qn(θ)), and resource alloca-
tions x(θ) = (x1(θ), . . . , xn(θ)). Note that q(θ) de-
pends on the values of θ = (θ1, . . . , θn) declared at
the start, and the resource allocations for day t, of
x((θ1,t, . . . , θn,t)), depend on θ and the set of active
agents at day t. These define the rules of the game
as regards how payments and resource allocations de-
pend upon participants’ declarations. At the equilib-
rium, these should satisfy the following properties.

1. Agents should find it in their interest to be truthful
in declaring their θi.

2. Agents should see positive expected net benefit from
participation.

3. Expected total payments should cover the cost c(Q).
4. Expected social welfare (total net benefit) should

be maximized among over all possible choices of Q, x(θ)
and q(θ) that satisfy 1–3 above.
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3. SHARING POLICIES
Each agent’s decision about the amount of resource

that he is willing to contribute to a resource pool de-
pends crucially on the policy that decides how resource
will be shared amongst agents who are active on a given
day. Unless one designs this policy cleverly, the total
system size will not be optimal. This is because agents
will attempt to free-ride by contributing less resource
than is socially desirable. In this section we demon-
strate how this can occur, even when we have full infor-
mation regarding the agents’ θi. It is rather subtle to
design rules that incentivize agents to make appropri-
ate contributions. However, things are relatively simple
for systems with a large number of participants, where
the law of large numbers makes the analysis tractable.
We explain this in Section 4 for a case in which the
θi are private information. These results are useful for
designing approximately optimal policies for systems of
practical sizes.

Consider the model of the previous section and for
simplicity assume that θi = 1 for all i. Hence agents
differ only in respect of their activity frequencies αi, as-
sumed known. Let the set of active agents at day t be S.
Suppose Q =

∑

j qj . Since all contending agents have
the same concave utility function u(x), it would seem
sensible to take xi(S) = Q/|S|. But is this correct? Or
should the sharing policy depend on the αi and on the
agents’ contributions, qi? If participants know that this

policy will be followed, what quantity of resources will

they contribute to the common pool?

We need to evaluate the combined effect of a shar-
ing policy, both on the efficiency with which resource
is shared, and on the initial resource contributions that
agents will make. Then we can compare different poli-
cies and possibly choose the optimal one. One might ex-
pect, for example, that sharing resource amongst agents
in proportion to their initial contributions provides bet-
ter incentives and greater efficiency than sharing re-
source equally amongst agents.

In the next sections we analyze the effects of different
policies for 2 agents, an equal sharing policy for n agents
and subscription pricing, in which all participants are
charged the same fixed fee.

3.1 Sharing a resource between two agents
Suppose there are just two agents. If agent i is active

and is allocated resource xi then he obtains revenue of
u(xi). Suppose the cost of buying resource is c(Q) = Q
and that agents contribute q1, q2. Let xi(S) be the share
of resource given to agent i when the set of active agents
is S. The average net benefit of agent 1 per period is

α1(1 − α2)u(x1({1})) + α1α2u(x1({1, 2})) − q1.

If we take xi({i}) = xi({1, 2}) = q1 then we model
agents acting alone, i.e., each building his own facility.

Suppose u(x) = r − 1/x. Acting alone, agent i maxi-
mizes

αi (r − 1/q)− q , (5)

For data r = 10 and α1 = α2 = 0.8 he obtains expected
net benefit of 6.2112, for q = 0.8944.

Equal sharing. If α1 = α2 = α, then we would ex-
pect that under any reasonable mechanism the agents
should be incentivized to contribute equally and that re-
source should be shared equally when S = {1, 2}. How-
ever, it matters what the mechanism is. Consider an
‘equal shares’ policy of xi({i}) = q1+q2 and xi({1, 2}) =
1
2 (q1 + q2). Agent i has net benefit of

nbi(q1, q2) = α

(

r − 1 − α

q1 + q2
− α

1
2 (q1 + q2)

)

− qi .

The social optimum is achieved by a planner choosing
q1 = q2 = q to maximize nb1(q1, q2) + nb2(q1, q2). This
is achieved by q = q0 :=

√

α(1 + α). The net benefit
per agent is w(q0) = 6.3029, for q0 = 0.8485. Suppose
agents have full information. Sharing resource with the
equal shares policy, agent i maximizes nbi(q1, q2) with
respect to qi. If we require q1 = q2 then the equilibrium
is q1 = q2 = 0.6, and each agent has net benefit 6.2.
This is less than the 6.2112 they obtain acting alone.
In fact, when n = 2, two identical agents will prefer to
act alone for all α1 = α2 > 7/9.

The problem becomes worse as the number of agents
increases. With n = 10 identical agents each con-
tributes qi = 0.2561 and the net benefit per agent is
5.1826. Once n is as large as 98 then the equilibrium is
driven to a point where agents no longer have positive
net benefit. They will start deserting the system.

We have made a surprising observation: two identical
agents can obtain greater net benefit by acting on their
own than by participating in a shared system in which
their contributions are determined as the Nash equilib-
rium of a nonzero-sum game. As we have seen above,
the social welfare obtained by ‘equal shares division’
can be less than stand alone for α > 7/9. With α = 0.8
the stand alone welfare is 6.2112 and the grid welfare is
only 6.2. This is because the incentives are wrong and
each agent tries to be a partial free-rider. How might we
improve things? One way is with proportional sharing.

Proportional sharing. The proportional sharing
policy divides the resource between agents in proportion
to their contributions. This gives xi({i}) = q1 + q2 and
xi({1, 2}) = qi. The equilibrium is at q1 = q2 = 0.8246
and the social welfare is 6.30225, which is better than
the stand alone welfare. The only change is that we have
replaced xi({1, 2}) = 1

2 (q1 + q2) with xi({1, 2}) = qi.
This is just a bit less than the 6.30294 that a social
planner could achieve.

Consider now a scheme that shares resource propor-
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tionally to sth powers of the contributions. That is,

xi({i}) = q1 + q2 , xi({1, 2}) =
qs
1

qs
1
+qs

2

(q1 + q2) .

Equal division is s = 0. Proportional division is s = 1.
What about other values of s? It turns out that the
equilibrium point is increasing in s. At s = 9/8 = 1.125
the equilibrium is exactly the same as that of the social
optimum. In fact, this works for any α when we take
s = 1

2 (1 + 1/α). Note that this means taking s ≥ 1.
The results are summarised in Table 1.

Other schemes can also be good. For example, recall
that q1 = q2 = q0 =

√

α(1 + α)/2 achieves the first-
best welfare. Let

x1({1}) = q1 + q21{q1≥q0}

x2({2}) = q2 + q11{q2≥q0} , xi({1, 2}) = qi .

That is, when agent 1 is the one only who is active then
he is allowed to use agent 2’s contribution, but only if
he contributes at least q0. This scheme achieves the
same social welfare as does a central planner. However,
to compute q0 we need to know the parameters α1, α2

(as when choosing s = 1.25 above). Is there a scheme
we could invent that does not need this information?

scheme social welfare values of q1, q2

stand alone rα − 2
√

α
√

α

6.2112 0.8944

central planner rα −
√

2α(1 + α)
√

α(1 + α)/2

s = 1
2 (1 + 1/α) 6.3029 0.8485

proportional rα −
√

α (3+5 α)

2
√

1+3 α

1
2

√

α(1 + 3 α)

sharing s = 1 6.3023 0.8246

equal division rα − 3
2

√

α(1 + α) 1
2

√

α(1 + α)

s = 0 6.2 0.6

Table 1: Social welfare per agent under different

sharing policies, when u(x) = 10 − 1/x, r = 10,
α = 0.8. By optimally choosing s the system

designer can achieve the first-best social welfare.

3.2 Equal sharing provides wrong incentives
The inadequacy of equal sharing is true more gener-

ally. Suppose that there are n agents and c(Q) = Q.
Again suppose θ1 = · · · = θn = 1 and α1 > · · · > αn.
Consider the policy of sharing resource equally. It turns
out that this policy does not work well, because most
agents are free-riders. Only agent 1 will have any in-
centive to contribute resources to the grid. To see this,

note that agents 1 wishes to maximize

nb1(q) = α1

[

α2Eu

(

q1 + q2 + · · · + qn

M + 2

)

+ (1 − α2)Eu

(

q1 + q2 + · · · + qn

M + 1

)

]

− q1

with respect to q1, and agent 2 maximizes a similar ex-
pression nb2(q) with respect to q2, where M is a random
variable denoting the number of agents 3, . . . , n that are
present. Since α1(1 − α2) > α2(1 − α1) it follows that

∂nb1(q)/∂q1 = 0 =⇒ ∂nb2(q)/∂q2 < 0 .

So the only possible Nash equilibrium is where agents
2, . . . , n choose to contribute q2 = · · · = qn = 0.

Now let M ′ be the number of the agents 2, . . . , n who
are present. For an equilibrium to exist with q1 > 0 and
q2 = · · · = qn = 0 it would have to be that

α1∂E[u(q1/(M ′ + 1))]/∂q1 − 1 = 0

for some q1 > 0. This can happen if and only if

α1u
′(0)E [1/(M ′ + 1)] − 1 > 0 .

Clearly, E [1/(M ′ + 1)] → 0 as n → ∞. So if u′(0) < ∞
and n is sufficiently large then no agent will wish to
make any contribution.

3.3 Equal sharing with subscription pricing
One possible scheme is to charge a flat subscription

fee to any agent who wishes to participate in the system.
We purchase the greatest amount of resource that the
collected fees allow, and in each epoch share it equally
amongst any agents who are active. This is the same as
requiring an an equal size of resource contribution from
all participants. Such schemes are very commonly used
in practice due to their simplicity. Let us investigate
how well one can do with such a scheme.

Suppose that θ1 = · · · = θn = 1, but αi differ, and
that a priori these are uniformly distributed on [0, 1].
We ask every agent to make a fixed subscription q.
There is a minimum α, say αq, for which it is advan-
tageous for an agent to participate. By considering the
fact that the marginal agent’s net benefit is 0, we have

αqEN

[

r −
1 +

(

1+αq

2

)

N

(N + 1)q

]

− q

= αq

(

r − [1 − αn
q + (1 + αq)n]/(2nq)

)

− q = 0 ,

where N is the number of the other n − 1 agents who
have their αi greater than αq. So N ∼ B(n−1, 1−αq).
The expected net benefit of all the agents is

1
2 (1 − α2

q)n

(

r −
1 − αn

q + (1 + αq)n

2nq

)

− (1 − αq)nq .

For r = 10 we find optimal q and αq as follows. For
comparison, the final column shows the first-best that
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could be obtained in the full information case. We can
also calculate that under proportional sharing, as n →
∞, agents of activity α are incentivized to contribute√

0.6α, and the net benefit per agent is 3.967. Stand-
alone it would be 3.667.

n q αq net benefit/agent
subscription first-best

2 0.6367 0.0726 3.770 3.827
10 0.5418 0.0697 3.939 3.966
∞ 0.5158 0.0575 3.987 4.000

Of course it would be even better to ask for a sub-
scription fee that depends on α, which could then be
policed. For example, this might be α q. For n large it
is optimal to take q = 1, αq = 0 and the expected net
benefit is ≈ 4n, which is almost the same as the scheme
that charges a subscription q = 0.5158 to all agents.

4. LARGE SYSTEMS
Now we look at Grids with a large number of partici-

pants and obtain a solution that is simple and intuitive.
We take the model of Section 3, in which each agent i
is characterized by known (αi, Fi). He is active on day
t with probability αi and when active and allocated re-
sources xi his benefit is θiu(xi). The parameter θi is
private to agent i which he must be incentivized to re-
veal truthfully at the start through his choice from a
set of available contracts.

For any n (not small) the optimal mechanism is like
this: a system is built of size Q(θ). Agents are charged
payments p1(θ), . . . , pn(θ), and the sum of these covers
the cost c(Q(θ)). When agent i is contending for the
resource amongst a group of active agents S he receives
xi(θ, S). For lack of space, the proof of optimality is
omitted here, but using optimal auction theory it turns
out that the optimal mechanism can be characterized as
follows. Define gi(θi) = θi − (1 − Fi(θi))/fi(θi). There
is a λ ≥ 0, such that for all S the optimal way to share
resource amongst a set of active agents S is to maximize

∑

i∈S(θi + λg(θi))u(xi(θ, S)) , (6)

over
∑

i xi(θ, S) ≤ Q(θ). Here λ is a Lagrange multi-
plier for a constraint

E
[

∑

i pi(θ)
]

≥ E
[

c(Q(θ))
]

.

This has an interesting limit when n is large, and it
allows payments to made in kind. We note that when
agent i is active the rest of the system will be in its
typical average state. So it is reasonable to look for an
approximate solution in which xi(θ, S) is independent
of S and we only need to satisfy the constraint

∑

i αixi(θ) ≤ Q(θ) . (7)

The problem reduces to one in which constraint (7) can

be satisfied by taking λ = 0 and has a solution in which

xi(θ) = xi(θi) := arg maxx′

i
{θiu(x′

i) − x′
i}, (8)

Moreover, this achieves the first-best optimum. Agent
i pays αixi(θi) and this exactly pays for his average
resource usage.

It is interesting that the optimal contract chosen by
agent i secures the same amount of resources from the
shared resource pool as he would optimally choose to
self-procure if no shared infrastructure was available
and he was always active. But he needs only pay for his
average usage, namely for αixi. By construction, this
scheme is incentive compatible, i.e., he will choose the
tariff parameterized by his actual value of θ. Note that
xi(θi) exceeds the size of the facility he would form if
he were to stand-alone, which would be

x0
i (θi) := arg maxx′

i
{θiαiu(x′

i) − x′
i} . (9)

Thus an agent benefits from the existence of the other
agents which are not always claiming resources; he uses
the optimal amount when he is active but pays only
when he uses it, since others pay for it when he is not.

Let xi = xi(θi), as defined above in (8). In practice,
we need

∑

i xi(θ, S) ≤ Q(θ) for all S. This is not pos-
sible if we try to take xi(θ, S) = xi for all S. However,
we can modify things slightly. With agent i contribut-
ing qi, we let yi = qi/αi and xi(θ, S) = yiQ/

∑

j∈S yj ,
where Q =

∑

j qj . Let us illustrate with u(x) = r−1/x.
Let Ij ∼ B(1, αj). Agent i has expected net benefit of

αiθiE
[

r −
(

yi +
∑

j 6=i Ijyj

)

/(yiQ)
]

− αiyi

= αi

(

θi(r − 1/yi) − yi

)

− αi(1 − αi)/Q .

The term αi(1−αi)/Q is small and varies little with yi,
and αi(θi(r−1/yi)−yi) is maximized by yi = xi(θi). So
agent i is incentivized to contribute ≈ αixi and the to-
tal welfare, which is O(n), will differ from its first-best
value by just O(1). Note that the designer need know
nothing about the θi. He constructs the resource curve
x(θ) by solving (8) for all values of θ, and the family
of payment curves αx(θ), for all potential values of ac-
tivity frequencies. Operations becomes very simple and
efficiency is near the full information first-best solution.

5. LESSONS FOR PRACTICE
We have investigated policies for running shared com-

puting resource infrastructures. We have assumed that
participants will be strategic in disclosing private infor-
mation about their actual resource needs and we have
considered how best to share resources and take pay-
ments from the participants so as to maximize the over-
all efficiency of the system and while covering its costs.
The chief lessons from this study are as follows.

1. A participant’s decision about the quantity of re-
sources that he will choose to contribute to the resource

7



pool of a virtual organization can be greatly affected
by the resource sharing policy that he expects will be
deployed when the system operates. Thus, a sharing
policy which simply optimizes the efficiency of the sys-
tem for a given quantity of resources may not be opti-
mal. For example, if the resource will be shared equally
amongst active participants then an agent may may
choose to contribute nothing to the resource pool.

2. One way to incentivize potential participants to
make significant contributions to the resource pool is
to impose a rule that a participant will only be per-
mitted to draw on the pool if he makes a minimum
contribution to it a the point that it is formed, i.e.,
by contributing a minimum quantity of computing re-
sources. We can further impose a sharing policy that
ensures that an agent who contributes more resource
will have greater priority for obtaining resource than
an agent who has contributed less. Such rules will in-
centivize agents to make contributions that reflect their
privately held beliefs about the benefits they expect to
obtain. The result is a facility with an appropriately
large quantity of resource, which is efficiently shared.
Since contribution are made in kind there is no need for
any internal money transfers.

3. In a facility that is already built and so has a fixed
size (such as NRNs, National Grid Infrastructures), the
running cost must be shared by charging the partici-
pants. In general, if the identities of the participants
change over time, then it is optimal to operate a spe-
cialized market in which participants bid for resource
shares according to their needs at each time, while gen-
erating enough payments to cover running cost. If the
set of participants is constant, then simpler policies ex-
ist. We have proposed some, but at the added cost of
implementing some accounting, such as policing the αi.

We have obtained results for simple models under
economic assumptions that may not always hold. For
instance, there are national infrastructures which can-
not charge fees to participants and so services must
be offered for free. It may be that participants can-
not make payments in the form proposed in this paper
simply because of internal accounting restrictions. Of-
ten the cost of the shared facility c(Q) is not precisely
known, and would take some non-trivial effort to define.
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