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Abstract—Demand response (DR) has received significant at-
tention in recent years and several DR programs are being 
deployed and evaluated worldwide.  DR systems provide a 
wide range of economic and operational benefits to different 
stakeholders of the electrical power system including consum-
ers, generators and distributors. DR can be achieved through a 
number of different mechanisms such as direct-load-control, 
incentives, pricing signals, or a combination of these schemes. 
Due to the remarkable variation in demand response systems, 
it becomes a challenge to evaluate and compare the effective-
ness of different DR programs holistically. In this work, we 
define a number of different performance metrics that could 
be used to evaluate DR programs based on peak reduction, 
demand variation and reshaping, and economic benefits. 

I.  INTRODUCTION  
We are part of a society that relies heavily on electrical 

energy to function. Our appetite for electricity continues to 
grow leading to different problems, most important of which 
is the mismatch between electricity generation, distribution 
and consumption. Electricity demand varies throughout the 
day and there are times when the demand peaks may exceed 
the capabilities of generation and distribution. Similarly, the 
deployment of variable renewable sources such as wind can 
lead to periods where generation exceeds the consumption 
and distribution capabilities of the power system. The conse-
quences of these mismatches include inefficient generation, 
deterioration of grid assets, increased prices & greenhouse 
gases, and possibly planned and unplanned outages for mil-
lions of people lasting several days over a large area. 

Traditionally, the mismatch between electricity genera-
tion and consumption has been handled by controlling gen-
eration. However, this approach, also known as known as 
“load/demand-following” may not always be feasible, eco-
nomical, or environmental-friendly. Progress in low-cost and 
high-speed communication between consumption, distribu-
tion and generation has enabled the complementary approach 
of “supply-following”, wherein a large number of responsive 
loads are shifted or curtailed to help handle the mismatch 
between production and consumption. This idea crystallizes 
into the concept of Demand Response (DR) systems and 

several projects all over the world are implementing such 
systems in different forms and in different domains. DR sys-
tems form an important part of the future Smart Grid picture 
and one of the aims of deploying advanced metering infra-
structure is essentially to enable DR [2][3][4][5]. 

Demand response can be achieved through a number of 
different mechanisms such as direct-load-control, incentives, 
pricing signals, or a combination of these schemes. The de-
sign of a DR system varies depending on a number of factors 
such as the type of generation, distribution, consumption, 
and demography. For example, certain geographical areas 
may have a large number of rivers or wind to power turbines 
while other regions may be depending on oil to produce elec-
tricity. In the former case, customers might be given incen-
tives to temporarily store excess generation, while in the 
latter, time of use prices might be used to discourage con-
sumption when oil prices are high. Additionally, some loca-
tions may have a single electricity distributor while others 
may have multiple distributors and this might determine if a 
DR system is implemented with the help of an energy aggre-
gator. The electricity consumers may be industrial compa-
nies, apartment buildings, or individual houses/villas. In the 
latter cases, the age and lifestyle of the consumers might 
have influence the design of DR system [6][7][8][9].  

With different types of DR systems and implementations, 
it is important to understand the performance of proposed 
and implemented DR solutions. For example, how effective 
are different communication mechanisms in terms of influ-
encing the consumers to avoid peak load? How efficient are 
the financial incentives for different stakeholders? How ef-
fective are different incentive schemes for certain types of 
consumers (e.g., residential)? Are the predictions of baseline 
electricity consumption correct or even possible for certain 
consumer types? Additionally, the acquisition and communi-
cation of information, which is part of the DR solution, 
brings its own set of problems. The information must be se-
cure, trustworthy, and tamper-proof. The system must not 
allow information to be misused (i.e., privacy of the stake-
holder must be guaranteed). Lastly, the storage of all cus-
tomer information must be done intelligently, both for effi-



ciency of storage reasons as well as the processing of the 
data.  
 In this context, this paper presents different candidate 
metrics that may be used to evaluate and compare the effec-
tiveness of DR programs. This work is part of the EU FP7 
WATTALYST project [1], which aims to understand how 
consumers respond to DR signals by increasing/decreasing 
their demands and how their participation is influenced by 
external and internal factors. Another goal of the project is 
to understand effective methods of conveying the DR sig-
nals to the users. In particular, the project will focus on in-
terface design; communication means (in-house displays, 
SMS messages), message emphasis (environmental, eco-
nomical) and customized messages based on gender, age 
and profile.  

 

II. BACKGROUND AND MOTIVATION 
 There are various types of DR systems studied in litera-
ture [1]. DR systems are mainly divided in two categories – 
1) Price Responsive DR, and 2) Controllable/Incentive-
based DR. In Price Responsive DR, the end user is exposed 
to dynamic electricity price. DR programs such as Real 
Time Pricing (RTP), Critical Peak Pricing (CPP), and Price 
to Retailer (PTR) belong to this category. In Controllable/ 
Incentive based DR programs, end consumers alters their 
demand pattern against certain specified incentives or under 
a designated agreement with the load serving entity (LSE). 
Various direct and indirect load control (DLC/ILC) DR pro-
grams belong to this category. Some DR programs are also 
specific to certain consumer segments such as commercial 
or residential and certain loads types such as air conditioners 
or washing loads etc. Due to the remarkable variation in 
demand response systems, it becomes a challenge to evalu-
ate and compare the effectiveness of different DR programs 
holistically.  
 Hence it is important to identify DR metrics that can be 
used to assess the efficiency and economic performance of 
DR systems. Some of these might be easily quantifiable 
such as the actual peak reduction, the demand price elastici-
ty (further divided in self-elasticity, cross-elasticity, elastici-
ty of substitution), whereas others may not, such as custom-
er acceptance and their participation rate (dependent to the 
level of comfort). The choices are numerous and one of the 
challenges is to make the most appropriate selection and 
define the metrics and the success criteria of a DR program 
by taking into account all of the following: 

• Environmental, demographical, physical and con-
textual characteristics such as types of premises 
and profile of users, weather conditions, nation-
al/local characteristics, idiosyncrasies and legisla-
tion etc.  

• Different energy network architectures, ICT in-
frastructure, levels of Advance Metering Infra-
structure (AMI) implemented and DR programs 
available 

• The availability (or absence) of historical or sta-
tistical data 

• The gains of different stakeholders and the total 
improvement of economic efficiency (social wel-
fare). Also, the degree of the improvement (com-
parison) after DR adoption and whether its mag-
nitude can justify the capital investments both 
from the network and consumer side. 

 With various aspects to consider and many solutions 
available, we need to measure the performance of key issues 
such as 

• Effectiveness of the DR programs 
• Which designs are most economically effective 

and sustainable as well as financially rewarding 
• Which information media are most effective in 

influencing the customer 
• Models for extracting user profiles from sensor 

data 
• Privacy and security aspects of conducting such 

evaluations 
 In this paper, we discuss these issues and outline, wher-
ever appropriate, some of the candidate measurement indi-
ces for use in DR evaluation. We first describe some basic 
primitives. Thereafter, we discuss indices used to evaluate 
the DR programs. Lastly, we cover indices that are relevant 
for large-scale deployment of DR programs. 
 

III. KPIS FOR EVALUATING DR PROGRAMS 
 Although DR is one of the important approaches to 
match demand, production and distribution, its design and 
implementation remains ambiguous. With different aspects 
to consider and many possible solutions, we need to meas-
ure the performance of key issues in various aspects as pre-
viously discussed. In the next subsections we will focus and 
elaborate on a number of performance metrics, namely: 
basic Key Performance Indicators (KPIs) for measuring 
electricity consumption and peak reduction, KPIs for meas-
uring the demand variation and reshaping after DR is em-
ployed, economically-related KPIs and briefly outline some 
of the functional ones.  

A. Primitive KPIs 
 Energy consumption is assessed by measuring power 

consumption over time:  

where e is the energy consumption (Joules) and p(t) is the 
power delivered (Watts). ti an tf are the initial and final times 
of the period of measurement in seconds. This period can be 
an hour, a day, a week, a month or a year depending on the 
interest. 

Average power over the period is then: 
 

 



Multiplying average power by 1 second leads to the en-
ergy consumed in Joules. Dividing the latter with 3600000 
provides the average energy consumed in kWh. 

The power variance over that period is: 

!
 The variance indicates how much the power consump-
tion has differed from the average. When the load is distrib-
uted smoothly over time, the differences between the peaks 
of the power consumption p(t) and the average are small, 
leading to smaller variance. 
 In a demand and supply setting, prediction is necessary 
to attempt match production and demand. A key perfor-
mance index for the prediction can be the variance  of 

, where  is the difference between the predicted 
power consumption pp and the actual or real one pa. 

!
 The bigger this variance is, the worse is the prediction. It 
is interesting to monitor this index with and without DR 
feedback to the consumers. 

B. KPIs for Peak reduction Quantification 
 Generally, the main goal of DR programs is to reduce 
the peak demand. This can be measured via the following 
metrics: 

• Change in the total electricity consumption per 
day. The original consumption is measured before 
starting the DR program and the new consumption 
is measured after the program inception. This is 
measured as 

!
• Change in total electricity consumption during the 

peak hours. This is measured as  

!
• Change in total electricity consumption during the 

off-peak hours. This is measured 

 

 

C. KPIs for Demand Variation Analysis and Demand Re-
shaping 

 The demand variation is defined as the result of the 
subtraction/addition of the real demand to the baseline. The 
real demand is measured via smart metering techniques but 
the baseline is always estimated since it reflects the demand 
that should have occurred if no DR message had been sent. 

A consumer may also be rewarded proportionally based on 
the difference between actual and baseline consumption.  
 A calculation method of the baseline is therefore re-
quired for every DR event within a program. But the accu-
racy of different baseline calculation methods obviously 
varies, even when the same method is applied to different 
groups of customers. This leads to an inaccuracy of DR 
event performance indicators, which can make the compari-
son of results between different DR programs difficult. 
Generally, the main goal of DR programs is to reduce the 
electricity demand during the peak load hours and to in-
crease the demand during off-peak hours so that electricity 
demand and supply can be matched1. The hours during 
which DR messages are sent are called event periods. De-
pending on the concrete type of DR programs, the event 
period can include the whole day (RTP-Real Time Pricing, 
TOU-Time Of Use tariff), high market price hours (CPP-
Critical Peak Pricing, CPR-Critical Peak Rebate) or periods 
of grid congestion (incentive programs). Since the main 
objective of DR programs is to influence electricity con-
sumption patterns, the main performance indicator that can 
be used is the change in energy consumption during event 
periods. A more powerful objective is the correlation be-
tween energy production costs and demand. Depending on 
the generation mix and the matching procedures in the ener-
gy market, energy costs vary in time. If DR can help to re-
shape the demand curve to the inverse of the energy costs 
curve, it can become a useful tool to decrease overall energy 
costs. 
 A typical metric to assess how a DR event’s perfor-
mance leads to reshaping of the demand profile is the RMS 
(Root Mean Square) of the difference between the real de-
mand and the reference curve within the event control peri-
od. This value is to be compared with the RMS associated to 
the baseline, so as to assess the performance of the DR 
event. But in order to compare RMS values, both curves 
should imply the same amount of energy, so that their mean 
value is the same. This fact represents DR actuations where 
the overall energy demand is not decreased. However, this 
situation is nearly impossible, because the average demand 
of the baseline and the real demand do not have a direct 
relation. The usual effect is that the average demand is low-
er than the average baseline, so the reference curve of the 
baseline should be normalized with the ratio of average de-
mand and average baseline.  
 This leads us to the introduction of another metric, the 
mentioned ratio of average demand and average baseline 
during the control event. This indicator is also a figure to 
monitor the performance of a DR event, but to be accurate it 
must also include a certain amount of time following the 
                                                             
1  From grid operation point of view the ideal situation is a flat 
demand profile. This objective is of course utopic because of the 
limitations in the operation of generation and mainly those associ-
ated to demand management.  
 



end of the control event. The reason is the possible rebound 
associated with operation of appliances with high thermal 
inertia such as HVAC systems. In the case of DR programs 
where the control events are consecutive, for instance in 
Time of use (TOU) programs with dynamic prices, the re-
bound effect should be included within each control period. 
If events are considered in a daily basis this condition is 
usually taken care of, because the time period susceptible 
for rebound effect is usually the afternoon (at least for cool-
ing systems, in which the peak period is close to noon). 

Additionally, when customers are recruited for DR pro-
grams by LSEs or third party energy aggregators, a number 
of KPIs related to demand dispatch such as uncertainty, var-
iation, and delay of demand shed become relevant as these 
factors determine the quality of response from the custom-
ers. Such metrics are useful in DR design and evaluation to 
determine the type of incentives to provide and the type of 
customers to recruit in order to achieve a certain amount of 
demand reduction. These include: 

• Uncertainty of demand shed: Let {X1, … , 
Xn}denote the time series that records the demand 
varied by a customer, i.e., the difference between 
the predicted demand (baseline) and the actual de-
mand, during the past n DR events. One can meas-
ure the uncertainty of demand reduction using the 
following methods: 

i. Variance: Var(X). Higher the variance, higher 
the uncertainty.  

ii. Entropy: Let X be discretized into k bins with 
thresholds b0, b1, …, bk and let pk = Pr(Xi " [bk-1, 
bk]). Then H(X) = - "i=1

k pk log (pk) is an esti-
mate of the uncertainty in the reduction. Higher 
entropy implies higher uncertainty.  

iii. Risk: Let rk = Pr(X # bk), i.e., the probability that 
the customer’s reduction is at least bk. rk is an 
indicator of the uncertainty or risk associated 
with the demand reductions of a customer. Low-
er probability implies higher risk. Other parame-
ters could also be taken into account to measure 
the risk associated with a demand reduction. 
One can also consider negative demand sheds in 
the time series (i.e. rebounds) if the customer in-
creases his demand during a DR event.  

• Delay responsiveness of demand shed: Let { D1, …, 
Dn} denote the time series that records the time re-
quired by a customer to shed his demand during the 
past n DR events. One can measure E[D], Var(D), 
and Pr(D ! d) and treat them as indicators of delay 
responsiveness of a customer, that is how quickly 
the demand reduction can be dispatched. This helps 
classify customers/loads into different categories 
and helps utilities dispatch demands at optimal 
times during peak periods. 

D. Economic-related KPIs 
 To quantify the DR effects on user demand and user 
comfort, as well as the relevant benefits in aggregate, the 
key indicators to be used relate to price elasticity, rate of 
participation, and discomfort caused to users.  

 

 
Figure 1. Price elasticity [4] 

 
Price elasticity can be decomposed into three types: 
1. Self-elasticity: measures the demand reduction in a 

certain time interval due to the price of that inter-
val. It is always negative; usage goes down as price 
goes up. For example, if a customer’s price elas-
ticity is 0.15, then a doubling (100% change) of 
price results in a 15% reduction in electricity usage 
or other things equal. Higher elasticity values 
translate into increased price response by custom-
ers. 

2. Cross-elasticity: measures the effect of time in a 
certain interval on the electricity consumption dur-
ing another interval. Namely, it measures the con-
sequences of reduced electricity usage on other 
goods. If a customer buys less electricity, then he 
has more money for spending them on other goods 
and services. 

3. The elasticity of substitution: measures the rate at 
which the customer substitutes off-peak consump-
tion for peak usage in response to a change to the 
ratio of peak to off-peak prices. It can have a posi-
tive value (or zero) and is commonly used in ana-
lyzing price response among large industrial and 
commercial customers. 

 Several studies conducted so far have used average price 
elasticity to observe the behavioral changes of residential, 
industrial and commercial customers. Figure 2 summarizes 
the results of studies that estimated the price response exhib-
ited by customers that participated in voluntary programs 
that involved time-varying prices.  

Various factors may influence customers’ price elastici-
ty, including the nominal level of prices. For example, some 
customers may be relatively irresponsible when prices are 
low but find it worthwhile to reduce load at very high pric-
es. This characteristic of price elasticity has important im-
plications for the design and evaluation of time-varying 
pricing and DR programs. 

Studies of large customers’ response to time-varying 
price changes find that there are large differences in price 



elasticity across business categories and various market 
segments. As for the residential customer response to time-
varying prices studies often report that price elasticity is 
driven in part by the number of electricity devices present in 
the home. Climate plays also a significant role, as well as 
the residents’ characteristics and the events that they affect, 
when they are at home and likely to shut off devices or re-
duce usage. 

 

 
Figure 2. Customer Response to Time-Varying Prices: Price 

elasticity Estimates [4] 
 

Finally, great role in the evaluation of DR programs 
have the customer acceptance and their rate of participation 
in dynamic pricing and DR programs. Important factors in 
the consumer’s decision to participate and enroll include the 
level and type of incentives offered, program requirement 
and conditions (e.g. duration and frequency of curtailments), 
assessment of risks and value (e.g., financial consequences 
for failures), effectiveness of program design and imple-
mentation (e.g., marketing, technical assistant) [1]. Besides 
in some DR programs (e.g., where customers do not directly 
respond to prices) their response is typically measured by 
the amount of load reduced. 

The following provides a synopsis of some metrics that 
are candidates for measuring DR economics as a whole. 

• Demand Price Elasticity (Self Elasticity): it 
measures the sensitivity of customer’s demand to 
price changes. It can be calculated using the fol-
lowing formula:  

!
where !e is change in energy demand and !p is change 
in price. 
• Customer Responsiveness: It is an indicator that 

measures how many customers have responded to a 
DR program following a DR signal sent to them, 
like a change in price. It can be measured as the to-
tal number of signals sent back by the customers as 
an absolute number or a percentage. The term “sig-
nal” as a feedback is defined in each case based on 
the particular context of the DR program (for ex-
ample the GUI utilized). Furthermore, at the time 
of the reaction of the user, the related context-
specific aspects can be observed and necessary 

metadata stored for further use (e.g. the customer 
responsiveness on weekends). 

• Absolute or Relative Load Impact: Further to the 
above metric this one is used in order to specify the 
intensity of customer’s response and can be meas-
ured as the number of kW of load curtailed or the 
percentage (%) of customer’s total load that is cur-
tailed. 

• Absolute Discomfort Impact: It indicates how much 
the customer’s comfort has changed. It is a simple 
but important indicator and there are various op-
tions of measuring it, depending also on the defini-
tion of “customer’s comfort” in the specific case. 
An example of discomfort is the temporary change 
of temperature to save energy (momentarily stop-
ping air conditioning in summer or heating in win-
ter) as perceived by the consumer [3] . 

• Discomfort level against total energy reduction 
constraint: considering the case that there is an ob-
jective set by the environmental/energy manager or 
administrator of achieving a specified % reduction 
of total consumption (expressed as a “hard” con-
straint) in a specific household or office premises, 
etc., this metric measures the level of discomfort 
caused by the specified reduction. This may vary 
based on the different reduction strategies utilized 
in order to achieve the target reduction. i.e.,  Dis-
comfort level X achieved for reduction  

(NewTotalConsumption - Orig.TotalConsumption ) [%]  
• Total energy reduction against discomfort level 

constraint: Compared to the aforementioned metric 
this one investigates the inverse case i.e., the chal-
lenge here for the energy administrator of the 
building is to achieve the maximum reduction of 
energy consumption without exceeding a specific 
discomfort level/threshold. i.e., Given a Discomfort 
level X,  

(NewTotalConsumption - Orig.TotalConsumption ) [%] 
is achieved.  

E. KPIs for quantifying the net economic benefits 
Furthermore, in order to quantify the potential net eco-

nomic benefits of DR programs the following KPI can be 
utilized:  

• Net Economic benefit for a player; that is, the 
difference of profits after and before the DR 
program.  

Thus, special methods should be developed to measure the 
economic and financial benefits of the various energy value 
chain players arising from the load/demand reduction due to 
the adoption and application of different DR programs un-
der different types of markets. There are many factors and 
externalities among players to consider when determining 
the economic benefits, which can be short-term (e.g., peak 
reduction leading to less frequent usage of costly backup 



generators) and long-term (e.g., stability of the distribution 
and transmission networks resulting in lower maintenance 
costs and better network planning). However, at the end of 
the day, it all comes down to estimating and comparing the 
total associated costs for each value chain player and the 
resulting difference in revenues before and after the de-
ployment of the DR systems and programs in order to obtain 
the net Economic benefit for this player.  

Finally, an overall measure of the economic impact of a 
DR program on the entire society (including both players 
and users), can be given by: 

• Difference in Social Welfare. This is the sum of 
the net economic benefits of all players in the 
value chain, plus the sum of net benefits of all 
users. It can be easily seen, however, that this 
amounts to the different of the sum of user utili-
ties after and before DR plus the difference of 
the total cost for energy production and distribu-
tions.  

 

IV. CONCLUSIONS AND FURTHER WORK 
DR programs are an important part of future smart grids 

and given their vast potential in helping reduce peak load 
and matching demand with supply, it is important to under-
stand the effectiveness of different DR programs and define 
metrics which could be used to evaluate the performance of 
proposed programs.  

Key performance indicators are part of a set of tools that 
can reveal the efficiency of a DR system: efficiency of 
communication between the stakeholders, efficiency of flat-
tening the peak load, efficiency towards sustainability of the 
DR program, efficiency of influencing the customer, and so 
on. In this work, we presented different types of KPIs in-
cluding KPIs for Demand Variation Analysis and Demand 
Reshaping, Economic KPIs, and some of the KPIs for quan-
tifying the net economic benefits.  

Further to the KPIs discussed, in the course of the WAT-
TALYST project we are planning to investigate a number of 
related KPIs related to different aspects of performance of 
DR systems such as those related to storage and retrieval of 
consumption data. These include (i) KPIs related to data 
management infrastructure: Examples include the Average 
Response Time [s], Average Data throughput [MB/s]. Both 
metrics must be evaluated in two directions with respect to 
the data flow: i.e. Data Upload and Data Retrieval.(ii) Min-
ing and Knowledge Extraction. The Benchmarks will in-

clude traditional relational database systems (RDBS) and 
systems tailored for storing mass data like the Hierarchical 
Database Format (HDF5). 

In order to evaluate particular DR programs and assess 
the appropriateness of the KPIs presented (and refine them 
as necessary), four worldwide trial sites have being estab-
lished as part of the WATTALYST project. The data col-
lected by sensors and smart meters along with feedback 
messages to and from the end consumers from these sites 
will be used to evaluate various parameters that influence 
customer participation as well as the impact of the key per-
formance indices in order to establish their support in the 
design and maintenance of DR systems. 
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