
A Framework for Evaluating the End-to-End
Trustworthiness

Nazila Gol Mohammadi, Torsten Bandyszak, Thorsten
Weyer

paluno - The Ruhr Institute for Software Technology,
University of Duisburg-Essen, Essen, Germany

{nazila.golmohammadi, torsten.bandyszak,
thorsten.weyer}@paluno.uni-due.de

Costas Kalogiros, Michalis Kanakakis
Athens University of Economics and Business,

Athens, Greece
{ckalog, kanakakis}@aueb.gr

Abstract—Trustworthiness of software and services is a key
concern for their use and adoption by organizations and end-
users. Trustworthiness evaluation is an important task to support
making informed decisions for both providers and consumers,
i.e., for selecting components from a software marketplace. An
analysis of the state of the art in software evaluation technologies
motivated us to develop an evidence-based approach for
trustworthiness evaluation. Most of the literature evaluates
trustworthiness by focusing on a single dimension (e.g., from the
security perspective) while there are limited contributions
towards multifaceted and end-to-end trustworthiness evaluation.
Our analysis reveals that there is a lack of a comprehensive
framework for comparative, multi-faceted end-to-end
trustworthiness evaluation, which takes into account different
layers of abstractions of both the system topology and its
trustworthiness. In this paper, we provide a framework for end-
to-end trustworthiness evaluation using computational
approaches, which is based on aggregating certified
trustworthiness values for individual components. The resulted
output supports in the definition of trustworthiness requirements
for a software component to be locally developed and eventually
integrated within a system, as well as, trustworthiness evidences
for a composite system before the actual deployment. Thereby
supports the designer in analyzing the end-to-end trustworthiness
values. An application example illustrates the application of the
framework.

Keywords— Socio-Technical-System; Computational
Evaluation; Trustworthiness; Metrics; End-to-End Evaluation

I. INTRODUCTION
Modern information and communication technologies

enabled significant improvements and facilitated the growth of
Socio-Technical systems (STS) and their integration in our
daily life. STS comprise information systems, software and
computer systems, mechanical parts, as well as organizations
and humans that use the system in order to achieve a goal [1]
 [2]. An STS is shaped by technologies and services that contain
software as core elements. The users of these STS depend on
these software services for performing their activities in
business or organizational settings, and in their social life.
Therefore, trustworthiness of these systems is a key factor for
user to trust and adopt them. The software elements in these
systems should be designed and manufactured in such a way
that they sophisticatedly satisfy trustworthiness requirements. It
is not only essential to use constructive quality assurance
techniques, such as best practices for development processes

[3] [4], but also to analytically evaluate the trustworthiness of a
desired system early in the design phase. Trustworthiness can
be seen as an objective system property reflecting its ability to
assure that it will perform as expected [5], e.g., a elderly user
of a health care service on the web, needs confidence that it
will meet her usability expectations, whereas organizations
require confidence about their business critical data. In order to
achieve objectivity, we need to measure certain system
qualities that are relevant to achieve trustworthiness. To this
end, metrics can be used in order to quantify trustworthiness
attributes [6]. Furthermore, measurements and corresponding
metric values can be used as evidences for certifying a certain
quality level.

Systems are often composed of existing software services
or components that are certified and provided on a software
market place (cf., e.g., [7]). Component-based development [8]
poses the challenge of considering different component
structures for determining the “End-to-End” (E2E)
trustworthiness of the overall system. Different certified metric
values of all the involved components have to be aggregated
considering the specific system topology, in which they are
embedded. Particularly, redundancy is often introduced in
system design, for instance, as a means to increase
trustworthiness in terms of higher reliability or availability.

Another challenge consists in aggregating the resulting E2E
trustworthiness values on different levels of granularity or
abstraction, e.g., on the level of trustworthiness attributes or
even for overall trustworthiness as a very high-level
trustworthiness indication. Despite a large number of
indications in the literature in evaluation and documentation of
the design decisions based on these evaluation results, the E2E
evaluation of multi-faceted trustworthiness remains an open
research. There are approaches that merely focus on e.g.,
reliability [9]. However, trustworthiness is rather a broad-
spectrum term with notions including reliability, security,
performance, and usability as parts of trustworthiness attributes
 [6]. Therefore, a holistic taxonomy of software quality
attributes that contribute to trustworthiness and corresponding
metrics (presented in our previous work [6]) is used as basis.

Thus, there are two dimensions that need to be taken into
account when evaluating the overall system trustworthiness;
the first dimension is the overall system structure while the
second is the level of granularity of E2E calculation, e.g.,
regarding a hierarchy of trustworthiness attributes, and sets of
different metrics. Our approach builds upon available formulas

mailto:thorsten.weyer%7d@paluno.uni-due.de�
mailto:ckalog,%20kanakakis%7d@aueb.gr�

that consider different system structures for calculating overall
trustworthiness.

This paper addresses the problem of evaluating the overall
trustworthiness of online STS, with a particular focus on
software assets that are accessible via an online marketplace.
Some software Marketplace allows integrators and service
providers to deploy a new composite system by selecting
system assets and compose them in order to create a new
system based on their trustworthiness certificates [7] [10]. We
use different metrics to quantify system trustworthiness
attributes, and use the trustworthiness metric values in the
certificate of each software component as parameters for
calculating the overall E2E trustworthiness. To this end,
workflow models serve as adequate abstractions to specify
sequences of assets that are involved in achieving some task.
Based on these low-level E2E trustworthiness values, more
aggregate values can be calculated, eventually resulting in an
overall trustworthiness value. E2E values can be used as
evidence of the system’s trustworthiness, and to compare
different candidate system compositions.

We propose a framework that supports designers in
composing E2E formulas and performing the trustworthiness
evaluation process. This framework includes metric skeletons
and templates, as well as guidance for determining aggregated
values on different abstraction layers. As an initial evaluation,
we present the application of our approach to evaluate the E2E
trustworthiness of an exemplary system from the Ambient
Assisted Living (AAL) domain. We also show how the
proposed framework supports E2E trustworthiness evaluation.

The remainder of the paper is structured as follows: In
Section II, we present the fundamentals and definitions of the
main concepts. A brief overview of existing techniques for
evaluating trustworthiness of software is provided in
Section III. Section IV describes our approach in evaluating
E2E trustworthiness. Section I presents an application example
using two scenarios. Section VI concludes the paper and
elaborates on future work.

II. FUNDAMENTALS
This section presents the fundamental concepts that form

the basis for our approach.
A. Trustworthiness Attributes and Metrics

We analysed software quality attributes and their
contribution to trustworthiness, and presented a comprehensive
set of trustworthiness attributes that should be considered in the
design of trustworthy STS [6]. This approach covers a wide
range of quality attributes instead of only focusing on e.g.
security. The concrete trustworthiness attributes are domain
and application dependent, e.g., in health care applications, the
set of attributes which have primarily been considered consists
of availability, confidentiality, integrity, maintainability,
reliability and safety, but also performance and timeliness.
Trustworthiness attributes can be classified and aggregated by
higher-level trustworthiness categories, such as
“dependability”, which may be concretized by certain attributes
such as “availability”. In order to quantify trustworthiness
attributes, metrics can be systematically derived. Hence,
trustworthiness metrics serve the purpose of objectively
identifying and measuring real-world properties that
characterize and contribute to trustworthiness attributes.

Regarding software-intensive systems, Kan in [11]
distinguishes three types of software metrics: product metrics,
process metrics, and project metrics. In this paper, we focus on
product metrics focusing on characteristics of software
products. According to IEEE 1061 [12], a software quality
metric is a “function whose inputs are software data and whose
output is a single numerical value that can be interpreted as the
degree to which software possesses a given attribute that
affects its quality”. Thus, metrics allow for measuring and
quantifying certain trustworthiness attributes by means of more
concrete properties of a system.
B. Component-based System Design

An STS consists of several assets, i.e., anything of value in
an STS [13], including physical, technical or logical parts, as
well as humans. An asset is an abstract, basic building block of
a system that may manifest in different implementations (i.e.,
asset instances from different vendors).

Component-Based Software Engineering aims at
extensively reusing existing components in software
development, and focuses on e.g. components and interface
models [1]. In the area of Service-Oriented Architectures
(SOA), software components, which are independent of their
environment, and loosely coupled, are used in order to build
systems that support business processes. The term “Workflow”
is used in the context of Web Service composition. Workflows
describe business processes, and can be related to software
services that support them [1]. BPMN, a modelling language
for representing business processes and control flows, can be
used for web service orchestration [14]. Concerning the
modelling of component-based systems, the Reliability Block
Diagram, as used in Reliability Engineering for complex
systems, allows the designer to model different composition
types, i.e., series, parallel (for modelling redundancy), and
combined series-parallel structures [9]. Related to web service
composition, there are some more specialised modelling and
description languages such as BPEL [15].

Software Marketplaces, such as the Amazon Web Services
Marketplace [16], provide platforms for distributing and
offering software services to organisations. In order to address
the problem of trustworthiness of the offered services,
certification is a mechanism to guarantee certain levels of
service [17]. For instance, Ali et al. present a Marketplace
system that enables the provision of security certificates [1].
The concept of a Trustworthy Sofware Marketplace [7]
incorporates machine-readable security certificates, and allows
for matching these trustworthiness evidences to user
requirements. We argue that the certification approach can be
extended to include multi-faceted trustworthiness attributes that
are quantifiable by means of metrics [5].

III. RELATED WORK
Service composition and evaluation with respect to

trustworthiness or quality of service, has been researched. Klatt
et al. propose to use a service quality prediction of composed
services in order to support service composition considering
service quality [18]. Quality evaluation is also an integral part
of the service composition framework proposed by Liu et al. in
 [19]. Elshaafi, et al. present an approach towards measuring the
trustworthiness of a service composition with focus on run-
time monitoring [20]. They provide formulas that allow for

calculating the trustworthiness (in terms of reputation,
reliability, and security) of composite services, taking into
account several service composition constructs such as
sequence, parallel, loop, choice, discriminator, and
multichoice-multimerge patterns . Zhao et al. propose a
framework for trustworthy web service management, which
also involves formulas for aggregating the availability,
reliability, and response time of services composed in
sequence, parallel, conditional, and loop structures [21]. Other
approaches, such as [22] focus on reputation by aggregating
service ratings in order to determine a provider’s rating.
Quality of Service (QoS) aggregation can be applied in order to
determine the QoS of a web service workflow based on the
QoS of each involved or executed web service [23], [24].
Cardoso et al. utilize graph reduction mechanisms and
respective formulas for aggregating time, cost, and reliability
of service workflows [22]. Workflow composition patterns and
aggregation schemes are also given in [24]. Hwang et al.
propose a probabilistic approach for estimating the QoS of
service compositions, which is based on more elaborate
metrics, and addresses uncertainty given for QoS values [23].
They consider sequence, parallel, choice, discriminator, and
loop structures in addition interleaved parallel, multiple
choices, and m-out-of-n constructs. Related to the use of
metrics, Wang and Crowcroft distinguish additive,
multiplicative, and concave metrics for QoS routing, which can
be considered as a problem that also applies to service
composition [25]. Raheja and Gullo considered that the
reliability of the whole system depends on the reliability of its
components, thus, formulas that represent the different
component structures are used in order to calculate the overall
reliability [9].

Although the related approaches summarized above support
a wide range of system structures, they focus on a limited set of
trustworthiness metrics neglecting the system trustworthiness
dimension previously described. Furthermore, we identified the
need for establishing a comprehensive framework that supports
a large set of trustworthiness metrics. More specifically, each
trustworthiness metric is mapped to a metric type
(multiplicative, concave, and additive) and has either a positive
or a negative interpretation (whether higher values are
desirable or not). For example, while both the availability and
the error rate are of multiplicative type, the former has a
positive interpretation while the latter has a negative one.
Furthermore, each trustworthiness metric belongs to one
trustworthiness attribute. The above information, together with
the system structure, is used to calculate the overall
trustworthiness metric. Even though we restrict to sequential
topologies we can support more complex structures by
allowing redundancy in specific asset instances (namely
parallel and “k out of N” constructs).

IV. FRAMEWORK FOR EVALUATING END-TO-END
TRUSTWORTHINESS

This section describes our E2E trustworthiness evaluation
framework. We build upon existing approaches towards
trustworthiness attribute classification, evaluation, and
formulas for composite system structures, and unify them into
a comprehensive framework that provides system designers
with guidance for evaluating multi-faceted trustworthiness on

different layers of abstraction. The aim of the framework is to
facilitate the evaluation process, and to structure evaluation
reports as the basis for selecting a certain design alternative.

Our framework covers two dimensions of E2E
trustworthiness evaluation, as depicted in Fig. 1. On the one
hand, the structure or topology of the entire software system
involves many different assets that participate in a certain
control or data flow relation to support a business process or to
achieve some business goal. This structures is described in
terms of workflows. For instance, parallel or redundant
structures are often used to increase trustworthiness properties
such as performance, reliability, or availability. These different
aspects of system structures need to be taken into account when
determining trustworthiness values of entire systems, and can
be abstracted by focusing on a complete system which may be
characterized by multiple workflows. On the other hand, the
trustworthiness of both single software services and overall
system structures can be evaluated on different levels of
abstraction or granularity. For instance, at the lowest level,
metrics are used to provide detailed evidences of specific
trustworthiness properties, while these values have to be
aggregated on the more abstract level of trustworthiness
attributes such as “availability”. The highest level of
trustworthiness granularity provides an overall trustworthiness
value for the whole system.

Fig. 1. Overview of the end-to-end trustworthiness evaluation framework.

The framework consists of two parts. First, an ontology that
provides general concepts for E2E trustworthiness evaluation is
presented. These concepts form the basis for establishing
calculation-based trustworthiness evaluation of composite
system structures on different levels of granularity. Second, we
describe our approach for objectively evaluating E2E
trustworthiness of a whole system's quality attributes, which
aggregates the partial trustworthiness measurements of each
asset instance composing a STS. Specifically, we describe
abstraction mechanisms and a related process of successively
aggregating trustworthiness values on different levels of
granularity, which takes into account the system structure or
topology. In the following, we describe the parts of the
framework in more detail.

A. Ontology for Design-Time End-to-End
Trustworthiness Evaluation

In order to establish a sound theoretical fundament for our
E2E trustworthiness evaluation approach, we define some basic
concepts that need to be considered when assessing the multi-
faceted trustworthiness of composite systems. Fig. 2 shows the
ontology of our E2E trustworthiness evaluation approach,
which defines the relevant concepts as well as their relations.

The abstract concept of “components” of STS is
represented by “Assets” and “Asset Instances”. This distinction
is necessary to differentiate between general and abstract

building blocks and concrete implementations that may
participate in a redundancy relation.

Fig. 2. Concepts of End-to-End Trustworthiness Evaluation.

An asset instance is a concrete manifestation of an asset
(also denoted “asset category”). For example, “DBMS_1”
could be a software service offered on the Marketplace as an
instance of the asset “Database Management System”.
Certificates for asset instances are provided by a Certification
Authority that evaluates a (software) implementation in order
to confirm that it meets some trustworthiness goals. A
certificate describes all observed trustworthiness properties of
the software, as well as related evidence in terms of certified
metric values (cf. [26]). A Workflow is a model that specifies
the set of asset instances as well as cardinality and their
interrelations, e.g., in the control flow of performing some
business process.

The “Workflow” concept is an appropriate abstraction
mechanism to focus on the aspects that are necessary for
determining E2E trustworthiness formulas. More details on the
information that is (graphically) modelled in a Workflow are
presented in next subsection. An End-to-End Formula is a
template or function that allows for calculating the
trustworthiness of composite system structures represented in
terms of Workflows. It requires metric values for each involved
asset instance as arguments, and returns one value that
characterizes the trustworthiness of the whole workflow.

In the following we describe our approach and the way that
we use the described elements for evaluating trustworthiness of
composite systems. Specifically, we elaborate on how an E2E
formula as the central artifact is created, used in order to
evaluate a system with aggregation of trustworthiness values at
different levels of granularity.
B. End-to-End Trustworthiness Computation

This section presents our approach towards calculating E2E
trustworthiness using the introduced framework. Specifically,
we describe the steps of an evaluation process that takes into
account different system structures as well as different levels of
granularity. First, we show how adequate models are created in
order to depict system and redundancy structures. Then, we
describe how aggregation mechanisms are used in order to
abstract from certain trustworthiness details in order to
eventually derive an overall system trustworthiness value.
1) Workflow Modelling and End-to-End Formula

Creation
The computational approach towards E2E trustworthiness

evaluation relies upon the availability of metric values for each
asset of the system as a means to quantitatively express
trustworthiness. The metric values can be found, for instance,
in certificates of the asset instances that are available on a
marketplace, as described in Section II. Thus, the E2E
computation is performed for concrete instances of the general
assets that build up an abstract system.

Depending on the characteristics of its intended usage
scenarios, a system can have arbitrary structures (sequential,
tree, network, etc.), where the nodes could be seen as the
building blocks of that system. A workflow is a specific
composition (or sequence) of asset instances that are invoked
and orchestrated in order to achieve a certain goal or to support
some business process. A graphical workflow model (i.e., the
workflow graph) aims at guiding the evaluation process by
modelling and determining which objects (i.e., asset instances)
are functionally connected and should thus be evaluated
together in an E2E configuration. Hence, a system can be
described by multiple workflows and respective graphs. Each
workflow determines a particular part of the system that is on
focus of evaluation, and contains vital redundancy information.
An example of such a workflow graph is illustrated in next
section. We propose to represent the following information in
an appropriate workflow model:
• (Sub-)System topology: the topology includes the asset

categories, and their relations.
• Assets and asset instances: Assets are abstract building blocks

of a system, while asset instances denote concrete
implementations or realizations of them.

• Start and end node: E2E trustworthiness evaluation requires
the definition of two end nodes (i.e., system assets) as a
starting and end node of a workflow sequence.

• Redundancy group and type: In addition to the interaction
relations of asset instances, it is also necessary to model the
redundancy among several asset instances of the same asset.
A redundancy group contains a number of asset instances that
participate in some kind of redundancy relation in order to
e.g. increase the availability of the provided service. The
redundancy type describes the minimum number of asset
instances in a certain redundancy group that will be required
to successfully process a request, e.g., any one of four (“OR”
type), two out of four , or all four (“AND” type).

Three types of E2E metrics have been defined in the
literature [25] [27]: the additive metrics (e.g., cost, the response
time), the multiplicative metrics (e.g., mean availability) and
the concave metrics (e.g., encryption key length). The metrics
type has to be considered when determining the respective E2E
formula. Table I provides skeletons of the mathematical
formula that would be constructed for computing the
trustworthiness value of a single asset (or asset category) j.
Such an asset category is assumed to be consisting of i =
1, … , n asset instances, where mi is the trustworthiness metric
value that characterizes the trustworthiness of the i-th asset
instance, and consequently appears in its trustworthiness
certificate. Depending on the metric type (concave,
multiplicative, or additive) as well as the metric target type, we
get a different formula, e.g., concave metrics depend on the
bottleneck asset instance and thus the minimum or maximum
of the asset instance metric values is needed (e.g., the asset
employing the smallest encryption key length). We should note
that the formulae appearing for multiplicative metrics refer to
the K-out-of-N case, which can be used to create the rest
“extreme” constructs as well. More specifically, if K = 1 then
it refers to the “OR” construct, while if K = N we get “AND”.

For simplification and better readability of the
multiplicative formula skeleton, we assume that all asset
instances belong to the same asset category, i.e., mi = m for

AssetAsset
Instance

Trustworthiness
Attribute

Certificate

Metric

Workflow
End-to-End

Formula

0..n1

110..n

1..n

includes

11
1..n

1

considers

Provides metric values

Provides parameters for

1..n

1
quantifieshas

has
0..n

1..n
includes

1..n1

i = 1, … , n, in contrast to the general case where mi <> mj.
The rationale is that we consider all the combinations where at
least K asset instances will complete a certain task. Thus, in the
example of an asset category composed of three asset instances
following the 2-out-of-3 construct we would consider four
cases. Following a binary representation, where 0 refers to the
event where a certain asset instance is not able to complete the
task and, the following cases would be considered for metrics
targeting at higher values: 011, 101, 110 and 111. Note that the
formula skeleton for additive metrics is valid only for
sequential compositions that have no redundancy.

Given that a workflow usually contains more than one asset
category, the next step is to compose the E2E formula,
denoted e. Table I provides a skeleton of the formula for all
asset categories, say j = 1, … , k depending on the metric type.
TABLE I. COMPOSITION OF FORMULAS FOR
CALCULATION OF ASSET CATEGORY TRUSTWORTHINESS AND END-TO-END
TRUSTWORTHINESS.
Metric
Type

Metric
Target
Type

Asset
Category
Redundan-
cy Type

Formula of Asset
Category 𝒋

Formula
for E2E
TW
Metric

Concave

Higher
values

- aj = min
i

mi e = min
j

aj

Lower
values

aj = max
𝑖
𝑚𝑖 e

= max
j

aj

Multiplicat
ive

Higher
values

AND
aj = �𝑚𝑖

𝑛

𝑖=1

 e = � aj
j

OR aj
= 1

−�(1 −𝑚𝑖)
𝑛

𝑖=1

K-out-of-N aj

= ��
n
i
�mi

n

i=k
∗ (1− m)n−i

Lower
values

AND
aj = �𝑚𝑖

𝑛

𝑖=1

e
= 1
−� aj

j

OR aj

= 1

−�(1 −𝑚𝑖)
𝑛

𝑖=1

K-out-of-N aj

= ��
n
i
�mi

n

i=k
∗ (1− m)n−i

Additive Both -
aj = �𝑚𝑖

𝑛

𝑖=𝑘

 e = � aj
j

The formula skeletons provide valuable guidance for
representing different system structures and asset redundancy
types in the form of a mathematical model for calculating E2E
trustworthiness metric values with respect to related metrics.
Metric values of single asset instances are then used as
parameters for the E2E metrics that have been defined based on
the workflows. In particular, an E2E metric value is derived for
each workflow of the system, and each provided metric.

2) Aggregation of Trustworthiness Values
So far, the focus of evaluation was limited to a certain

number of separate workflows, and individual metrics. As
mentioned above, our E2E trustworthiness evaluation
framework also considers different levels of granularity of the
values describing the trustworthiness of a system. To this end,
the concept of trustworthiness attributes is an appropriate
means to abstract from different metrics that may be available
for a certain attribute in the first place. Since the resulting
metric values still pertain to certain workflows, they can be
aggregated by focusing on a trustworthiness attribute related to
the whole system, which may be characterized by multiple
workflows. Calculating the minimum of all the different values
pertaining to the workflows seems an adequate mechanism and
in order to guarantee consistency the metrics where lower
values are desirable are transformed into higher ones. Another
approach could be determining the weighted average among
the different values. Finally, the last step is to abstract from
multiple workflows and calculate one overall E2E value. To
this end, the designer can specify weights for each attribute into
account and calculate one overall E2E value using a weighted
average. Fig. 3 illustrates the steps in aggregating
trustworthiness values on different levels of granularity.

To summarize, our approach allows for calculating E2E
trustworthiness metric values on the following layers of
abstraction:
• E2E values per Workflow and Metric: Given a workflow and

a particular metric that can be used to estimate a certain
trustworthiness attribute, we calculate an E2E metric using
the E2E formula skeleton.

• E2E values per Workflow and Attribute: For determining the
E2E value related to a certain workflow and trustworthiness
attribute, the minimum value of all E2E values that are
available for each of the metric pertaining to that attribute, is
calculated.

• E2E values per Attribute: The E2E value per trustworthiness
attribute is determined by calculating the minimum value for
all the given workflows, related to this attribute.

• An E2E value per system (overall E2E trustworthiness): In
order to calculate one E2E trustworthiness metric value for
the whole system described by several trustworthiness
attributes and workflows, weights are specified by the
designer for each trustworthiness attribute.

V. APPLICATION EXAMPLE

This section provides an overview of a case example that
demonstrates the application of our E2E trustworthiness
evaluation framework. The example is taken from the domain
of Ambient-Assisted Living (AAL). The exemplary Fall
Management System monitors an elderly person at his or her
home with respect to emergency situations, such as a fall.
Detected emergency situations are reported to a central alarm
handling service that will decide upon the actions that can be
taken. Depending on the severity of the emergency, relatives
can be notified, or ambulances requested. Fig. 4 shows an
exemplary design-time model of the Fall Management System,
and includes the main (software) components.

Using the E2E trustworthiness evaluation framework as
guidance, a system designer or composer is supported in

Calculate
E2E values

per Workflow
& Metric

E2E values per Workflow
& per Metric

Certificates

Start

Determine
Minimum per
Workflow &
TW Attribute

E2E values per Workflow
& TW Attribute

Determine
Minimum per
TW Attribute

Determine
Overall E2E

value
End

E2E values
TW Attribute Overall E2E value

Yes

No

Multiple
workflows
available

?
Yes

No

TW Attributes
WeightsP

ro
ce

ss
 o

f E
nd

-to
-E

nd

M
et

ric
 V

al
ue

 E
va

lu
at

io
n

Create E2E
values per
Workflow &

Metric

TW
Metrics

Workflow
Graph Certificates

Fig. 3. Process of Calculating End-to-End Metric values.

Fig. 4. Design-time system model of the Fall Management System

making informed decisions on the system configuration
regarding trustworthiness requirements. The goal is to evaluate
a certain system configuration (i.e., an orchestration of assets)
with respect to its E2E trustworthiness before deploying it.

By facilitating the generation of trustworthiness values of
different granularity, our approach supports the decision-
making process in the design phase. In other words, the
designer is able to perform “what-if” scenarios and adjust the
system structure and redundancy levels in order to meet her
goals.

As an initial step, the designer selects the evaluation criteria
to be used, i.e., the weights of relevant trustworthiness
attributes with respect to the overall E2E trustworthiness of the
complete system. The weights represent the preferences
regarding the relevance of each attribute, and can be specified
e.g. as percentage values. For the Fall Management System, the
following list of attributes and associated weights is specified:
Privacy (40%), Availability (100%), Reliability (80%),
Response Time (100%), Learnability (40%), Effectiveness
(60%) and Functional Correctness (60%). The definitions of
these trustworthiness attributes are given in [5].

Then the designer creates a set of workflow graphs, each
representing a certain feature or usage scenario of the system.
The workflows are based on the system model shown in Fig. 4.
She has the flexibility to exclude some asset categories that are
less important, or make assumptions about the trustworthiness
of the relevant asset instances. Even though for example
humans play a key role in STS, the workflow concept allows us
to focus only on certified software assets that are available on a
marketplace. The resulting two workflow graphs for the Fall
Management System are shown in Fig. 5.

Component Interaction

W
or

kf
lo

w
 1

W
or

kf
lo

w
 2

PERS
EMHT

OR

PERS_App_1
EMHT_2

EMHT_1

Ambulance_Service

1 out of 3

Ambulance_Service_2

Ambulance_Service_1

Ambulance_Service_3

PERS
EMHT

OR

PERS_
App_1

EMHT_2

EMHT_1

Emergency_Notification_Service

2 out of 3

Emergency_Notification_App_2

Emergency_Notification_App_1

Emergency_Notification_App_3

Profile_Management_Service

Profile_Management_Service
_1

Fig. 5. Workflow Graphs of the Fall Management System.

Workflow 1 consists of three asset categories defined in the
abstract system model shown in Fig. 4. For each one the
designer has selected concrete asset instances that are available
as implementations or realizations of the assets, as well as their
redundancy relations (i.e., cardinality and redundancy type). In
our scenario, the selected system composition consists of a

single instance of the PERS device, i.e., “PERS_App_1” which
is a PERS implementation for mobile phones, two EMHT
instances, including the main “EMHT_1” and a backup
“EMHT_2” (indicated by the “OR” type in the graph), and a
pool of three Ambulance Service instances, one of which
should be available at a certain point in time (denoted by the “1

out of 3” redundancy type). These asset instances or instance
groups are modeled in a sequential order, indicated by the
directed edges between them. The asset instances involved in a
workflow are part of a certain usage scenario of the system that
is to be developed. In particular, this workflow specifies that
the “PERS_App_1” has some functional dependency with
either “EMHT_1” or “EMHT_2”, which in turn calls one out
of three Ambulance Services. Thereby some overall system
functionality is provided to the user, e.g., the request of an
ambulance as a reaction to an emergency alarm handled by the
EMHT.

The second workflow graph shown in Fig. 5 describes
another scenario or functionality, which should also be
provided by the Fall Management System.

It involves a slightly different set of asset categories that are
used to notify relatives in an emergency situation.

Again, we focus on software assets, so the notification is
performed by Emergency Notification Apps in this workflow.
We assume that at least two out of three relatives should be
informed in this concrete case, so that a minimum of two
respective applications are involved in successfully carrying
out the scenario described in this workflow.

The next step includes providing a trustworthiness
certificate for each asset instance that appears in the
workflows. Certificates carry the trustworthiness metric values
that have been approved by some certification authority, and
are used as the basis for E2E trustworthiness calculation. Then,
as depicted in Fig. 3, the first level or step of trustworthiness
computation consists of creating an E2E formula for each
trustworthiness metric and workflow. Based on the metric type
and metric interpretation, as well as information about the
involved component’s interactions present in the workflow
graphs, an E2E formula for each trustworthiness metric and
workflow is created.

For instance, the EMHT instances are modeled as an AND
(or “multi-choice and multi-merge”) structure, while the
Ambulance Service instances and the respective group have “k
out of n” semantics. In case of Workflow 1, the following E2E
formula will be created for multiplicative metrics that have a
positive interpretation (higher values being desirable):

eWork�lowx,m = ∏ ai,m
𝑛
𝑖=1 = twPERSApp1,m ∗ ��1 −

�1 − twEMHT1,m��1 − twEMHT2,m�� ∗ [1 − (1 −
 twAmbServ1,m)(1 − twAmbServ2,m)(1 −

twAmbServ3,m)� Where twi,j is the TW Metric value
of the asset instance i for TW metric m.

This formula represents a generic template that needs to be
filled with metric values for each involved asset instance. The
metric values extracted from certificates are used to calculate
separate E2E values for each metric and workflow. In our
example, the “mean run-time availability” metric, which
belongs to the “availability” attribute, is a multiplicative one,
has positive interpretation, and is composed and calculated
using formula above, resulting value of approximately 79%.
All involved software assets in the system composition, and
redundancies are taken into account. As another example for
this multiplicative metric, for workflow 2, we get:

eWork�low2,m = twPERSApp1,m
∗ �1 − ��1 − twEMHT1,m� ∗ �1 − twEMHT2,m���
∗ twPro�ileManagementService1,m
∗ ���1 − twEmergencyNoti�icationApp1,m�
∗ twEmergencyNoti�icationApp2,m
∗ twEmergencyNoti�icationApp3,m�
∗ �twEmergencyNoti�icationApp1,m
∗ �1 − twEmergencyNoti�icationApp2,m�
∗ twEmergencyNoti�icationApp3,m�
+ �twEmergencyNoti�icationApp1,m
∗ twEmergencyNoti�icationApp2,m
∗ �1 − twEmergencyNoti�icationApp3,m��
+ �twEmergencyNoti�icationApp1,m
∗ twEmergencyNoti�icationApp2,m
∗ twEmergencyNoti�icationApp3,m]� ≈ 0.3

Similarly, for each metric, a separate E2E metric will be
created, and corresponding trustworthiness values will be
calculated respectively. For instance, in the case of concave
metrics where lower values are desirable (e.g., “mean error
rate” that belongs to the reliability trustworthiness attribute),
the following E2E TW formula will be created:

eWork�low1,m = max

�aPERS,m, aEMHT,m, aAmbulance,m�

= max

�

twPERS1,m, twEMHT1,m, twEMHT2,m,
tw𝐴𝑚𝑏𝑆𝑒𝑟𝑣1,m, tw𝐴𝑚𝑏𝑆𝑒𝑟𝑣2,m, tw𝐴𝑚𝑏𝑆𝑒𝑟𝑣3,m

�

The formulae for the rest metrics would be created in
similar way, according to Table I. Trustworthiness attribute can
be quantified by multiple metrics. Hence, the framework
presented in Section IV allows for aggregating and calculating
E2E metrics on different levels of granularity. The first step is
to abstract from metrics and calculate an E2E value on the level
of trustworthiness attributes per workflow. More specifically, if
multiple metrics characterize an attribute, in this example we
use the minimum value per workflow and metric as the E2E
value for that attribute and workflow combination. In order to
do so, in this case metrics with negative interpretation are
transformed into ones with a positive interpretation by taking
the residual complementary probability value.

If we consider the trustworthiness attribute availability
(identified by attrId) that contains the trustworthiness metrics
m1,…, m6 then its value for the workflow 1 is be computed as
follows:

𝑡𝑤𝑊𝑜𝑟𝑘𝑓𝑙𝑜𝑤1,𝑎𝑡𝑡𝑟𝐼𝑑
= 𝑚𝑖𝑛 (𝑡𝑤𝑊𝑜𝑟𝑘𝑓𝑙𝑜𝑤1,𝑚1, 𝑡𝑤𝑊𝑜𝑟𝑘𝑓𝑙𝑜𝑤1,𝑚2 , 𝑡𝑤𝑊𝑜𝑟𝑘𝑓𝑙𝑜𝑤1,𝑚3,
𝑡𝑤𝑊𝑜𝑟𝑘𝑓𝑙𝑜𝑤1,𝑚4, 𝑡𝑤𝑊𝑜𝑟𝑘𝑓𝑙𝑜𝑤1,𝑚5 , 𝑡𝑤𝑊𝑜𝑟𝑘𝑓𝑙𝑜𝑤1,𝑚6)

= 𝑚𝑖𝑛(0.9,0.63,0.385,0.5,0.89,0.48)
= 0.385

According to the framework, the next step is to abstract from
several workflows, and to compute the overall E2E values of
the whole system per trustworthiness attribute. Following a
similar “pessimistic” approach, this value is determined
accordingly by calculating the minimum value of all
workflows. For the attribute “Availability”, this will result in
the following E2E value:
twm = min (twWork�low1,m, twWork�low2,m) = min(0.79,0.3) = 0.3

Finally, the overall E2E trustworthiness of the whole system
has to be calculated, as an abstraction from separate attribute
values. To this end, the weights that have been initially
assigned to each attribute from the designer are taken into
account in order to compute the weighted average. This
calculation is reflected in the following formula for our
example:

∑wAttr ∗ twAttr

∑wAttr

=
0.4 ∗ 0.385 + 1 ∗ 0.3 + 0.8 ∗ 0.41 + 1 ∗ 0.34 + 0.4 ∗

0.5 + 0.6 ∗ 0.4 + 0.6 ∗ 0.37
0.4 + 1 + 0.8 + 1 + 0.4 + 0.6 + 0.6

≈ 0.3

The resulting E2E trustworthiness values on different levels of
granularity (i.e., per workflow and metric, per workflow and
TW attribute, per TW attribute, as well as one overall TW
value) allow the designer to evaluate and document the
trustworthiness of different alternative system compositions on
the instance level, and consequently helps in making informed
design decisions.

VI. CONCLUSION AND FUTURE WORK
In this paper, we addressed the problems of the commonly used
evaluation techniques and metrics for evaluating E2E
trustworthiness. Component-based software development
introduces the challenge of considering different component
structures for determining an “end-to-end” trustworthiness
value based on metrics. The system structure needs to be
considered and reflected in the E2E trustworthiness metric that
is used to calculate these values. Especially redundancy
structures, which are introduced to assure correct system
performance and thereby increase trustworthiness levels at
design-time, require consideration in E2E trustworthiness
calculation. The explicit description of respective metrics is a
precondition for the calculation of E2E trustworthiness value,
which requires certified metric values of each involved asset as
parameters. This evaluation result will be documented and used
to support making informed design decisions.

Using Eclipse Process Framework we will describe the
process of applying the proposed framework in more detail (cf.
 [4]). This will provide system designer with guidance
information about when and how to evaluate the designed STS
in within the development life-cycle, and which work products
are expected as outcome of applying the techniques.
Furthermore, in order to support the risk-based approach, while
the computational approach is performed on application level,
relying on measurements of trustworthiness attributes of
software asset instances available on the marketplace, the risk-
management approach is helpful on the higher level of abstract
assets, i.e. asset categories that can be realized by multiple
instance implementations. Specifically, at design-time it is
essential to identify trustworthiness requirements as controls to
prevent threat activity at run-time. We find that using risk
analysis in complementary way to commuting approach can
characterize the STS to best regarding the trustworthiness
threats. The initial steps and concept toward complementing
computational evaluation are sketched in our work [28].

REFERENCES
[1] Sommerville, I.: Software Engineering. 9th Ed., Perarson, 2011.
[2] Whitworth, B.: A Brief Introduction to Sociotechnical Systems, IGI

Global. Massey University Auckland, New Zealand, 2009.

[3] Paulus, S., Gol Mohammadi, N. and Weyer, T.: Trustworthy software
development, In: Communications and Multimedia Security, 233-247,
2013.

[4] Gol Mohammadi, N., Bandyszak, T., Paulus, S., Håkon Meland, P.,
Weyer, T. and Pohl K.: Extending Development Methodologies with
Trustworthiness-By-Design for Socio-Technical Systems, In: Trust and
Trustworthy Computing (TRUST), 206-207, 2014.

[5] Avizienis, A., Laprie, J.-C., Randell, B. and Landwehr, C.: Basic
concepts and taxonomy of dependable and secure computing, IEEE
Transactions on Dependable and Secure Computing 1 (1), 11-33, 2004.

[6] Gol Mohammadi, N., Paulus, S., Bishr, M., Metzger, A., Koennecke, H.,
Hartenstein, S., Weyer, T. and Pohl K.: Trustworthiness Attributes and
Metrics for Engineering Trusted Internet-based Software Systems. In:
Cloud Computing and Services Science, (CLOSER Selected Paper),
Communications in Computer and Information Science, 19-35, 2014.

[7] Di Cerbo, F., Bezzi, M., Kaluvuri, M. P., Sabetta, A., Trabelsi, S., Lotz,
V.: Towards a Trustworthy Service Marketplace for the Future Internet.
In: F. ´Alvarez et al. (Eds.): FIA 2012, LNCS 7281, pp. 105–116, 2012.

[8] Lenzini, G., Tokmakoff, A., Muskens, J.: Managing Trustworthiness in
Component-based Embedded Systems, In: J. of Electronic Notes in
Theoretical Computer Science, 179., 143-155, 2007

[9] Raheja, D. G. and Gullo, L. J., Design for Reliability. Wiley, 2012
[10] Ali, M., Sabetta, A., Bezzi, M.: A Marketplace for Business Software

with Certified Security Properties. In: Cyber Security and Privacy
Communications, Computer and Information Science, 105-114, 2013

[11] Kan, S. H., Metrics and Models in Software Quality Engineering. 2nd Eds.
Addison-Wesley, 2003.

[12] IEEE: IEEE Standard for a Software Quality Metrics Methodology, IEEE
Stdandard 1061-1992, 1993 .

[13] Surridge, M., Nasser, B., Chen, X., Chakravarthy, A., Melas, P.: Run-
Time Risk Management in Adaptive ICT Systems, In: 8th Intl. Conf. on
Availability, Reliability and Security (ARES), IEEE, 102-110, 2013

[14] Decker, G., Kopp, O., Leymann, F., Pfitzner, K. and Weske M.:
Modeling Service Choreographies Using BPMN and BPEL4Chor, In:
Proceedings of the 20th Intl. Conf. CAiSE, 79-93, 2008

[15] Khalaf , R., Mukhi, N. and Weerawarana, S.: Service–Oriented
Composition in BPEL4WS, In: 12th Intl. Conf. World Wide Web, 2003.

[16] Amazon (2014) AWS Marketplace URL:
https://aws.amazon.com/marketplace/ (visited on 11/20/2014)

[17] Lotz, V., Di Cerbo, F. Bezzi, M., Kaluvuri, S. P., Sabetta, A. and
Trabelsi, S., Security Certification for Service-Based Business
Ecosystems, In: The Computer Journal. Oxford Journals, 2013.

[18] Klatt, K., Brosch, F., Durdik, Z., Rathfelder, C. , Quality Prediction in
Service Composition Frameworks, In: Service-Oriented Computing -
ICSOC, 131-146, 2012

[19] Liu,. Z., Liu, T., Cai, L. and Yang, G., Quality Evaluation and Selection
Framework of Service Composition Based on Distributed Agents, In:
Proc. of the 5th Intl. Conf. on Next Generation Web Services Practices
(NWESP), vol. 2., 68-73, 2009.

[20] Elshaafi, H., McGibney, J. and Botvich, D., Trustworthiness monitoring
and prediction of composite services, In: IEEE Symposium on Computers
and Communications (ISCC), 000580-000587, 2012

[21] Zhao, S., Wu, G., Li, Y. and Yu, K.: A Framework for Trustworthy Web
Service Management, In: Proc. of the 2nd Intl. Symp. on Electronic
Commerce and Security (ISECS). 479-482, 2009.

[22] Malik, Z. and Bouguettaya, A., RATEWeb: Reputation Assessment for
Trust Establishment among Web services, In: VLDB J. 18 (4). 885-911,
2009.

[23] Hwang, S.-Y., Wang, H., Tang, J. and Srivastava, J.: A probabilistic
approach to modeling and estimating the QoS of web-services-based
workflows, In: J. of Information Sciences 177 (23). 5484–5503, 2007.

[24] Jaeger, M. C., Rojec-Goldmann, G. and Mühl, G., QoS Aggregation for
Web Service Composition using Workflow Patterns, In: Proc. 8th IEEE
Intl. Enterprise Distributed Object Computing Conf., 149 – 159, 2004

[25] Wang, Z. and Crowcroft, J. , Quality-of-service routing for supporting
multimedia applications, In: IEEE J. on Selected Areas in
Communications 14 (7), 1228-1234, 1996.

[26] Cerbo, F.D., Kaluvuri, S.P., Motte, F., Nasser, B. Chen, W.X., Short, S.:
Towards a Linked Data Vocabulary for the Certification of Software
Properties. In: 10th Intl. Conf. on Signal-Image Technology & Internet-
Based Systems, pp. 721-727, 2014.

[27] Almerhag, I. A., Goweder, A. M., Almarimi, A. and Elbekai, A. A.:
Network Security for QoS Routing Metrics, In: Intl. Conf. on Computer
and Communication Engineering (ICCCE), 1 – 6, 2010.

[28] Gol Mohammadi, N., Bandyszak, T., Goldsteen, A., Kalogiros, C.,
Weyer, T., Moffie, M., Nasser, B., Surridge, M.: Combining Risk
Management and Computational Approaches for Trustworthiness
Evaluation of Socio-Technical Systems, to appear in CAiSE Forum,
2015.

http://www.amazon.com/Stephen-H.-Kan/e/B001HD09XW/ref=dp_byline_cont_book_1�
https://aws.amazon.com/marketplace/�

	I. Introduction
	II. Fundamentals
	A. Trustworthiness Attributes and Metrics
	B. Component-based System Design

	III. Related Work
	IV. Framework for Evaluating End-to-End Trustworthiness
	A. Ontology for Design-Time End-to-End Trustworthiness Evaluation
	B. End-to-End Trustworthiness Computation
	1) Workflow Modelling and End-to-End Formula Creation
	2) Aggregation of Trustworthiness Values

	V. Application Example
	VI. Conclusion and Future work
	References

