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SUMMARY

The concept of service-oriented architectures (SOA) has recently emerged as a design principle for the next
generation of IT solutions. The main idea behind SOA lies in treating software applications as composed
of simpler, cooperating services, implemented by components that communicate over networks through
open standards. Such a modular structure is expected to question the effectiveness of current business
models for building and distributing software, which generate revenue through license fees. Under SOA,
the license fee is replaced by more flexible schemes, whereby users are charged according to their actual
usage of services and the corresponding hardware infrastructure. Our work constitutes a first step toward
exploring the economic aspects of a market for software components, as well as the incentives of software
manufacturers to support this trend. In particular, we examine the factors that affect profitability in
an open market for services, we build simple models to predict and explain market growth and we also
suggest ways to accelerate this growth, while also achieving a higher level of economic efficiency. Copyright
© 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Software developers have been investigating better and economically more efficient ways of build-
ing software applications for decades. Technological innovation and competitive pressures have
systematically pushed for newer and smarter techniques to be formulated and employed, gradu-
ally moving the community of software developers away from monolithic practices and closer to
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modular approaches. Among the highlights of this trend were the introduction of the object-oriented
programming languages in the 1970s, the emergence of independent software vendors a few years
later (who specialized in developing reusable components for other software manufacturers), the
appearance of frameworks (large collections of general-purpose reusable libraries targeted at sup-
porting and accelerating the development of various applications—examples include Sun’s J2EE
and Microsoft’s .NET Framework) and recently the definition of protocols capable of providing
remote code execution and web services.
Today, this trend is expected to continue with the emergence of pervasive computing systems

[1] and service-oriented architectures (SOA). The former term refers to the existence of compu-
tational capabilities within virtually all objects of human surroundings and not just computers or
cell phones. This scenario portrays desks, furniture, electric appliances, cars and even our pens and
clothes as being connected to the Internet, communicating with each other and offering all kinds
of computational services to human users. Such a highly distributed context will eventually lead
to SOA, whereby the computational needs of individuals and corporations will be served by com-
bining independent, cooperating web service-like modules over communication networks. Some
also envision a new generation of Internet applications, structured as components located in various
locations and communicating among themselves to provide comprehensive services. A setting like
this is close to utility computing [2], a paradigm in which information technology is provided as a
commodity (e.g. like electricity) and its users are charged on a per-use basis, while being ignorant of
the actual location of the computing facilities and the network technologies employed to distribute
the service.
SOA clearly exhibit a radically different set of characteristics, compared with more traditional

approaches of developing and selling computer software. Before SOA, the dominant business model
was that of building applications as packages and charging their users a (usually expensive) license
fee. Variations like group licensing are just price-discrimination strategies of this fundamental
model. Software leasing is another variant, whereby the customer does not have to pay for the
license immediately, but in small increments while using the product. Application service providers
(ASPs) are perhaps an intermediate step toward SOA. In this model the customer is charged a license
(or per-use), but the software is installed in the ASP’s computing facilities. Thus, the end-user does
not have to worry about maintaining, protecting or operating private infrastructure, something that
usually entails considerable costs. SOA, on the other hand, take this notion one step further, in that
software need not necessarily be offered by a single provider, or installed in predetermined facilities.
Independent, cooperating components may be offered by multiple providers, reused in a number
of applications (besides the one they were initially developed for) and run over the facilities of an
ASP or multiple infrastructure operators. This component reuse is a fundamental aspect of SOA
and motivates our research in this paper. It allows for large cost reductions both on the provider
and the customer side as discussed in [3]. The advantages of SOA and some interesting market
forecasts can be found in [4,5]. There is an obvious strong complementarity between SOA and Grid
computing as discussed in [6], and there are strong drivers for a SOA-cloud integration [7].
This study analyzes various aspects of SOA from an economic point of view. Traditional soft-

ware development largely follows the economic patterns of low marginal cost, positive network
externalities from the demand side and lock-in. However, the patterns of production, reuse and
consumption under SOA are not studied in the current economic literature and are expected to raise
a number of new challenges of a socio-economic nature. For example, it is not yet clear whether
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a market for components is feasible, i.e. whether manufacturers can sustain themselves. Does the
survival of such a market require software developers to exhibit a large degree of cooperation? Are
production externalities present and how do they affect market evolution? Do first-movers enjoy
a better chance of ruling the market or increasing their profitability? How can the various pricing
strategies affect the behavior of the market as a whole? These, among others, are crucial questions
that our work addresses.
Our goal is to understand the implications of component reuse on the supply side. As we will

argue in the remainder of the paper, this cost reduction implied by component reuse does not
come for free. When application providers plan the development of their applications, they face
the added risk of not having certain required components available in the market, or even having
to design an already available component again (and hence increasing their production costs). We
also observe that the revenue of a provider that produces components is related to the number
of other components available in the market due to the large number of possible combinations
that can be created as applications for the customers. This is an important externality that has
important consequences for the dynamics of the market. We believe that our modeling of the
SOA producer incentives is novel and useful for understanding the certain aspects of this new
technology. It raises a large number of research topics that should be investigated further. Our
results in this paper do not offer direct advice to practitioners but help in understanding some key
trends in this new market. Our discussion on pricing (either through a common repository policy
or in a free market) shows that prices may play a very important role in the way, the market will
develop. Of course, all this is sensitive to the assumptions of our models and to the values of certain
parameters.
The structure of this paper is as follows. Section 2 places our work within the existing literature.

Section 3 examines the decision context of two software developers who wish to build applications
sharing some common functionality. This simple case serves to exemplify the risk associated with
being a first-mover in a market of software components and illustrates the need for cooperation
among entrants. Section 4 discusses the implications inherent in such a cooperative attempt and
outlines some of the fundamental issues. Moving beyond one-shot cases, Section 5 examines the
expected profitability of a participant in a market for components and how this is affected by the size
of the market and the prices within it. Section 6 deals with the initial stages of market growth and
suggests ways to accelerate it, with interesting implications to the economic efficiency of the market
as a whole. Finally, Section 7 studies the pricing strategies that are likely to be employed by profit-
maximizing participants and draws qualitative results as to how these will affect market evolution.
The paper concludes with a short summary and a discussion on the directions for future work.

2. RELATED WORK

The most closely related work from the economics literature is the ‘mix-and-match’ approach,
originated in [8], and followed in [9,10]. The basic idea of the mix-and-match models is the
following: in industries where consumers can assemble their own systems, firms must decide
whether to make their components compatible with those of their rivals, before competing with
the prices. These models look at the case of two firms producing the two sole components of a
system; firms are assumed to be profit maximizing. If the two firms choose incompatibility, then
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only two systems are available for the consumers to buy: firm A’s system XAA , which combines
components X1A and X2A, and firm B’s system XBB , which combines components X1B and X2B .
If the components are compatible then the consumers have also the options to form the systems XAB
and XBA. There are variations of these models, in which compatibility can be decided unilaterally
or must be decided by both firms. In this context they show that, under certain conditions (absence
of positive externalities), the incentives of the firms are aligned. Other related work is in [11],
which examines the impact of the number of varieties of complementary goods on the decisions of
consumers to buy certain primary goods under conditions of incompatibility.
The above models have some common aspects with those defined in this paper, namely, that

cutting the price of one component will increase the sales of all systems using that component,
including systems produced by other firms. But there is an important difference: in our model a
firm decides whether to produce a given component or not, which is not the case with the models
in the mix-and-match systems literature, where all the components are always produced by each
provider. An other important difference concerns the type of competition. In the mix-and-match
systems, firms produce systems that are substitutes, and create competition. In our model, where
systems correspond to complete applications, we assume that there is no substitution, i.e. each new
application generates its own demand. The effect of compatibility in our model lies in the cost
reduction, it enables for the firms that reuse the components developed by other firms. We assume
that firms producing components are profit-maximizing, and they do so by choosing component
prices, see Section 7. To our knowledge, this model is novel and better captures the aspects of the
software industry and cloud computing that we are interested in. We also believe that the results of
this paper cannot be derived by simply extending or applying existing results.
Compatibility has also been discussed in other contexts. It has been traditionally associated with

network externalities, as in the standard framework first explored in [12]. A system of compati-
ble components is treated as a single good characterized with positive consumption externalities
since the utility of a consumer increases with the number of other consumers using compatible
products. This is the standard model that justifies compatibility: a larger ‘network’ of compatible
components may be more profitable since the demand will be higher. It suggests that small firms
producing components will tend to choose compatibility, whereas larger firms that already have a
large established market share may prefer to be incompatible with others. All these results assume
externalities associated with demand.
In our present work our models also show the existence of externalities, but on the supply

side. These are now between producers that benefit from the availability of compatible components
provided by other producers, since this allows them to reduce their costs. In that respect, our models
and the corresponding results are new and depend on the specific form of the externalities obtained
due to cost reduction. For instance, the specific formulas of the provider’s profit depend on the state
of the system (see Sections 5 and 6) and the different results we summarize in Figure 1 depend on
the above structure of the problem and are not generic. The specific structure of our model makes
them plausible.
To complete our discussion, there are several related recent studies on complementary technolo-

gies and patents that investigate the issues of double markup (see [13,14], among others). In [13]
the authors analyze the incentive of a monopolist in product A to enter complementary product B’s
market in order to force independent suppliers of B to charge lower prices, which increases its own
profits made from product A. In our case this would model the competition between providers that
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Figure 1. Developer profitability with time of entry.

reduces the incentives for double markup. An interesting model that has also some commonalities
with our model is in [15,16]. This work deals with models of patent portfolios that allow a full
range of complementarity and substitutability, and analyzes the welfare effect of patent pools and
evaluates several factors that encourage or hinder the formation of these pools.
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3. THE ONE-SHOT GAME

We begin our exploration by examining the decision-making problem of two software developers,
A and B, each of whom desires to build and deliver an application to the market. Applications are
made up of a number of modules, each of which represents a subset of the overall functionality
within the application. Under the current business model for software delivery, both developers have
to build all modules of their application and sell them as a package for a license fee. Assume that
developer i (with i ∈ {A, B}) has cost ci to build one module and earns revenue Ri by delivering
its application at a profit-maximizing price. In addition, let for simplicity both applications be
made up of k modules. Therefore, under the license scheme, application developers make profit
�pack
i = Ri−kci . Notice that applications do not compete with each other and are assumed to address

different market needs, so that none of the developers gain anything by blocking the completion of
someone else’s application. We also consider risk neutral firms with quasi-linear utility functions
that depend only on their revenue.
Under SOA, however, developers have other options as well. Instead of delivering their appli-

cations as packages, they may develop each module as a component with open interfaces. This
does not affect their application’s functionality, since components developed for an application
may call each other’s methods and interact in an open environment, such as a Grid system, with
this being transparent in the eyes of the end-users. However, choosing to build components in-
stead of a single large package brings about two significant changes: on the one hand, there is a
chance that in the applications of A and B there will be common functionality, i.e. some of the
modules will be used in both applications. Developing a common module as a component gives
manufacturers the opportunity to build it only once and then share it, so that their joint development
costs are reduced. On the other hand, though, a component requires open interfaces to commu-
nicate with the rest. Plus, breaking up a complex application into neat smaller components with
well-defined semantics that can be generically used, which might not be a trivial task. Therefore,
choosing to deliver components leads to increased development costs per module. To capture the
above two effects, we assume that m of the k components of our developers’ applications are
shared, i.e. are common to both products, and that building a module as a component with open
interfaces increases its production cost by a factor of �>1. We also assume that the number and
identities of the m common components are common knowledge to both developers A and B,
meaning that there is no uncertainty as to which subsets of functionality are in common with their
applications.
If a developer chooses to deliver components, it must also decide which of the m common

components to develop itself. Cost reductions are achieved when a common component is developed
by just one of two participants and then shared with the other, at a price r that is negotiated between
them. In actuality, developers under SOA, even with full knowledge of the commonly needed
modules have an additional number of 2m choices, since any of the m common components may
or may not be built by a developer.
The above scenario defines a game, in which A’s payoff is affected by B’s decision and vice versa.

Of course, if either developer chooses to deliver a package, it makes �pack
i , irrespective of what the

other developer selects. Both players (developers) in our game have 2m +1 strategies to select from.
Strategy P corresponds to delivering a package, while each other strategy CX represents delivering
components: building those which are unique to its own application and, for those in common, only
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the ones in the set X . Let �
Si |S j
i be the profit of developer i when having selected strategy Si and

the other player j �= i has chosen strategy S j . Naturally, �
P|S j
i = �pack

i for all S j ∈ S.
For all other cases (when Si �= P), the payoff is formulated as follows. Assume Si =CX . Since

i is building components, it has to develop each of the non-common components k − m at a cost
�ci per component. Moreover, it has to develop the common components in X for the same cost
per component, leading to an additional cost of |X |�ci . As for revenues, manufacturer i is able
to deliver its application when all of its components are available. Therefore, i makes Ri if the
other developer has chosen CY and X ∪ Y = M , where M is the set of all common components
(|M| =m). In that case, however, developer i has to purchase the remaining components in M − X
from the other player, at a price r per component.
We remind the reader that, by assumption, developers are aware of which components they have

in common but do not engage in negotiations to mutually decide, which components in M will be
developed by each. Instead, we assume that they independently and simultaneously decide on a
strategy for delivering their applications. To examine their behavior under this context, we employ
the concept of a Nash equilibrium from game theory. A Nash equilibrium is a vector of strategies
(S1, . . . , SN ) in a game with N players, where Si is the strategy chosen by the i th player, such that
no player has the incentive to deviate from its chosen strategy unilaterally. Formally, if S−i is the
strategy vector of all other players except i , and �Si |S−i

i is the payoff to player i when he selects Si

and everybody else chooses the strategies in S−i , then, under a Nash equilibrium, �Si |S−i
i ≥�

S′
i |S−i

i
for all S′

i ∈ S.
To identify the Nash equilibria (NE) of our game, we reason as follows. First, the strategy profile

(P, P) is always a Nash equilibrium. To see that, assume that A chooses P . Then, to have all
the components for its application developed, B may either choose P or CM , otherwise at least
one component will be missing. Under CM , however, B will make RB − k�cB , which is less than
RB − kcB for all values of �>1. Therefore, B will choose P and thus (P, P) is a NE.
Moreover, every strategy pair (CX ,CM−X ) is also a NE, for price r and values of � in an

appropriate range. In each such case, A makes RA − (k −m + |X |)�c − r(m − |X |) + r |X | and B
makes RB − (k−|X |)�c−r |X |+r(m−|X |). For this to be a Nash equilibrium, it must be that both
these quantities are greater than or equal to the corresponding �pack

i . Observe that, in the NE of
this type, all modules are built as components and each is built only once (by only one developer).
It can easily be seen that, if (CX ,CM−X ) is a Nash equilibrium, it also represents a Pareto-

improvement upon (P, P), meaning that both developers are better-off under (CX ,CM−X ) than
under (P, P). This is obvious since both the developers’ payoff is greater than �pack

i . However,
as we have assumed no coordination between developers (independent decisions) then both cannot
be aware of the exact set X , the other player will choose to develop (so that they may develop
M − X ). Worse, if they independently choose X and Y and X ∪Y ⊂ M , then neither can deliver its
application, both make zero revenues and thus incur losses. Finally, the NE of the form (CX ,CM−X )

are not symmetrical. But since neither firm can identify itself as player A or B, they cannot safely
decide between strategies CX and CM−X . The only symmetrical NE in pure strategies are (P, P),
while there clearly exists no dominant strategy for the players.
What about mixed strategies though? A mixed strategy for player i consists of a randomization

over the strategies in S, whereby each strategy s ∈ S is chosen with probability ps and
∑

s∈S ps = 1.
Calculating the symmetrical mixed strategy Nash equilibrium gives non-zero probabilities for all
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Table I. A simple game payoff matrix.

P C∅ C{�}
P R − 2c R − 2c R − 2c

R − 2c −�c R − 2�c
C∅ −�c −�c R − �c − r

R − 2c −�c R − 2�c + r
C{�} R − 2�c R − 2�c + r R − 2�c

R − 2c R − �c − r R − 2�c

strategies in S. However, the expected payoff under this strategy profile is exactly equal to �pack
i

for each developer i . To see this, we employ Nash’s fundamental theorem [17]; this states that,
under a mixed strategy Nash equilibrium, the payoff of every pure strategy of player A played with
non-zero probability against the randomized strategy of player B must be the same. Since pure
strategy P has payoff �pack

A whatever the probabilities in B’s strategy, then every other strategy CX

must have payoff �pack
A as well, for a total expected payoff of exactly �pack

A . The same applies for
player B.
The following payoff matrix exemplifies the simplest case for k = 2, m = 1 and identical players

(RA = RB = R and cA = cB = c). Developers A and B each have an application to build: A’s
application consists of modules � and � while that of B is made up of � and �. Strategies of player
A are represented as rows and those of player B as columns. Each cell of the table contains the
payoffs of A and B, in that order, given the intersecting rows and columns corresponding to their
choices (Table I).
Here, we clearly see that (C∅,C{�}) and (C{�},C∅) are NE for sufficiently low � and a suitable

value for r . In particular, for (C∅,C{�}) to be a Nash equilibrium, it must be R−�c−r>R−2c and
R−2�c+r>R−2c. Both these conditions are true if and only if �≤4

3 and r ∈ [2c(�−1), (2−�)c].
In that case, these equilibria are better for both developers than the third NE, which is (P, P).
The intuition we gain from the above analysis is that building components can be profitable, yet,

without coordination among developers, it can be a risky business. If a developer is not certain that it
will indeed enjoy cost benefits due to common modules being developed by others, then it faces the
risk of not ‘completing’ its application (i.e. having all of its modules). Alternatively, the developer
faces the risk of having to incur the cost � times for every module without any actual benefits.
Furthermore, even if a company is willing to take a chance and try out components, the expected
profit is no greater than that of a package. Plus, a package guarantees this profit, while anything else
gives it as an ‘expected’ payoff. If we assume that players are even slightly risk-averse, i.e. they
have sublinear utility functions, a developer is clearly better-off choosing to deliver a package.
A variation of the above game can be formulated, in which developers do not choose strategies

simultaneously but in order. Suppose in our previous example that A plays first and B follows.
Naturally, if A chooses to build a package, then B will do so as well, so (P, P) remains a Nash
equilibrium. If A chooses strategy C� and selects price r for the common component �, then B
will select C∅ if r<c(2 − �); otherwise, it will choose P . In the first case, the revenues of A
increase with r , so A will rationally select the maximum possible price for r , conditional on B
purchasing the common component from it, i.e. r = c(2 − �) − �, for a very small �>0. Finally,
there is an equilibrium in which A chooses C∅ and B selects C� and price r = c(2 − �) − �.

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2009)
DOI: 10.1002/cpe



ECONOMIC ASPECTS OF BUILDING SOFTWARE FOR SOA

Observe that, in this variation of the game, the player who builds the common component makes
R − 2�c + c(2 − �) − �≈ R − 2�c + 2c − c� = R − 3�c + 2c= R − c(3� − 2)≥R − 2c, if �≤4

3 .
We see that the developer of the common component makes more profit than the developer who
purchases it and more than ppack

i . Therefore, the first developer will optimally choose C� and B
will select C∅. Notice that, in this equilibrium, the first player effectively absorbs all the benefit
from delivering components of the second player.
Notice, however, that most hardships in our game stem from the fact that developers are not

allowed to negotiate before making a decision. What if we allowed them to decide, a priori, which
of the common components would be developed by whom, as well as the exchange price per
component? We study this scenario in the next section.

4. ISSUES IN COOPERATION

In the previous section, we have formulated a simple game to assess the decision-making problem of
developers who wish to achieve cost reductions by developing commonly used components in their
applications. We have seen that, if firms do not negotiate on the exact subset of the common compo-
nents that each will develop, they are very likely to totally refrain from delivering the components.
Therefore, the element of cooperation becomes critical to the appeal of component development.
By cooperation, we mean that developers have a chance to decide, before any decision is made,

which components will be developed by whom and at what price r will they be shared. In this
cooperative scenario, there is no reason why only one-on-one interactions should occur. Instead, we
can imagine larger groups (coalitions) of cooperating developers being formed, in which the costs
of developing common functionality are shared. In this section, we are interested in identifying
ways for developers to engage in such cooperative efforts. The analysis is thus aimed at exposing
any implications, as well as providing simple solutions whenever possible, employing concepts
from cooperative game theory.

4.1. Deciding roles

The first question that a set of cooperating developers has to answer is who builds what. First of all,
it is reasonably clear that no developer will purchase a component at a price r that is greater than
its actual development cost �ci . We may now identify two subcases to study the above question,
based on this fundamental observation and our assumption of the developers’ rationality. In the first
subcase, all developers are identical in terms of cost efficiency, i.e. ci = c, for all i . Although not
entirely accurate, this hypothesis is not outright false, since the development costs per component
across the software industry are not expected to differ significantly. In the second subcase, developers
are assumed to have different levels of cost efficiency, expressed as different ci ’s.
Distinguishing between these two subcases helps expose some aspects of developer cooperation

that are more (or less) important in each. For instance, if we assume identical costs, the question
of which firm (A or B) develops a commonly used component affects just their profitability.
On the contrary, if firms have varying costs, then a social optimum is obtained by having the most
efficient developer actually build the component, in the sense that society pays the least possible
amount of money to develop some reusable functionality. Furthermore, if the cost efficiency (the
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ci ’s) of participants in a coalition are hidden information and they have the option of misreporting
their actual cost values, then there is a need for incentive-compatible mechanisms to guarantee the
coalition’s efficiency; that is, guarantee that, despite the information asymmetry, the most efficient
developer still produces a commonly used component.
We begin with our first subcase, in which all firms are identical in terms of their costs (i.e.

ci = c, ∀i). Here, a direct result of the necessary condition that r<�c is that no developer will ever
rationally build a component not required by its own application. To see this, consider the case of
just two developers, A and B, as before. If A does not require a component for its application but
knows that B does, he can build it at cost �c but sell it for r<�c, in which case he experiences a
loss. If now, instead of a single developer B, a group of developers (say, G) needs this component,
developers in G are clearly better-off sharing the cost among themselves, rather than each paying
r to A. For instance, let there be two developers in group G. For A to be profitable, it must be
that 2r>�c, meaning that the joint revenue from both developers in G purchasing the component
should outweigh its development cost. This implies that r>�c/2. But, by appropriately coordinating,
developers in G can easily choose one of themselves (at random) to develop the component for
�c, then share it for half that cost, so that each will only have to pay �c/2. The fact that this price
can indeed be achieved is proved in Section 4.2. A similar argument applies for any number of
developers in G.
We see that if developers have identical cost levels, then they must negotiate for every component

within the group of participants that need this component, since no ‘outsider’ may affect their
decision, by accepting to build the component and sell it to them (once to each member of the
group). Within those groups, of course, there is no point for two (or more) firms offering the
same component; not only would this be inefficient as a whole, but also irrational for the second
developer. Therefore, the group must elect a single developer to do the job, then share it with others
at a predefined price. Naturally, the group will elect the developer who promises to share it at the
lowest price. It turns out that such a price is unique and we calculate it in Section 4.2.
Notice that, in the case of multiple common components, the decision as to which developer

builds each of them can be handled separately. For each of the common components, a separate
group is assembled to assign its development to a particular member. For example, if a developer
belongs to a group G� for the common component �, it may also belong to another group G� for
component �, etc.
Turning our attention to our second subcase, however, we see that an efficient developer may

as well build a component not included in its application and sell it at a price r , which is higher
than its own cost but lower than others’, even if these form a coalition to share the development
costs. For instance, if �cA = 2 and �cB = �cC = 10, then A may sell a component not required
by its application to B and C at price 5 − � for any infinitesimally positive �, in which case all
three developers benefit. Therefore, if cost efficiency varies among developers, the question of who
develops what is, again, in conjunction with pricing issues.

4.2. Pricing

We saw that, if developers have identical cost levels, then they must negotiate for every component
within the group of participants that need this component. Within those groups, of course, there is
no point for two (or more) firms offering the same component. Therefore, the group must elect a
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single developer to do the job, then share it with others at a predefined price. Naturally, the group
will elect the developer who promises to share it at the lowest price. It turns out that such a price
is unique. Assume that developers in each group place bids. The group then automatically assigns
the least-bid developer to build the common component, pretty much like an auction.
In the first subcase, a rational developer will bid exactly b∗ = �c/N , where N is the size of the

group. To see that, suppose he chooses b>b∗. If the group accepted that, our developer would make
−�c+ (N − 1)b, while all other participants would make −b. But −�c+ (N − 1)b> − �c+ (N −
1)b∗ = − (�c/N)>− b, meaning that our developer makes more than everybody else in the group.
Thus, another developer might arise offering b∗ and win the election to the benefit of both himself
and the group. Similarly, choosing b<b∗ means making less profit than everybody else. Again, it is
preferable to declare b∗. If all participants are rational, then the prevailing bid would be b∗ by all.
This b∗ also corresponds to the Nash bargaining solution ([18, pp. 164–168]). Since all the

participants in a group are identical, no one possesses a ‘threat strategy’ allowing that firm to
request a higher price for the common component. Plus, b∗ has the nice property of maximizing
the product of everyone’s benefit. If the winning bid is b, the winner develops the component and
gets b by all remaining N − 1 developers, thus enjoying payoff −�c+ (N − 1)b. All others simply
have payoff −b. Therefore, the product of everyone’s payoff equals (−b)N−1(−�c + (N − 1)b).
This quantity is maximized for b= b∗. Observe that the developer of the component in this case
makes no profit by building it, since every member of the group makes −b∗.
In our second subcase, we have seen that a developer outside the group of ‘common interest’

has an incentive to provide components to the group. In this way everybody benefits. Pricing then
becomes trivial, as the most efficient firm (least ci ) will develop components for all, and charge
them at the maximum price which is consistent with the groups buying from it. For instance, let a
group G be interested in a component needed by all its members and let cG = mini∈G{ci } be the
cost of the most efficient developer in the group. Since, left alone, the group would decide a price
no less than b∗

G = �cG/|G|, the outside efficient developer will simply ask for a payment bout<b∗
G .

The exact value for bout will be determined by competition. More specifically, we can expect it
to be equal to 1/|G| times the cost per component of the second most efficient developer in the
market, minus a small �, if this is less than b∗

G ; otherwise, it will be b∗
G − �. With any choice of

price greater than this, the second most efficient developer (or a group member) can present a better
deal to the group members and outbid the actual most efficient one.
This scenario, with one developer building all components for the market, seems of course a bit

strange. But the assumption that developers have different costs to such a large degree to allow
that is equally non-intuitive. If we are willing to accept the possibility of a producer being able
to deliver a component with three or four times less cost than everybody else, then it is optimal
for this producer to be the sole component manufacturer in the market. However, as we mentioned
before, this is quite unlikely and our first subcase with equally efficient firms better captures the
aspects of the real world.

4.3. Information asymmetry

The subcase with identical firms is simple, since the costs of every participant in the market
are the same and this is common knowledge. However, in the presence of different costs, a firm’s
efficiency might not be directly observable by others. A simple election rule that assigns component
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development to the least-cost participant may be counter-productive if such hidden information
creeps in. To illustrate this, consider firms A and B with costs per component �cA = 2 and �cB = 5
and no outsiders. Both firms are interested in a single common component. If they both speak the
truth, then A will be elected to build the component and share it with B at price �cB/2= 2.5,
as per the Nash bargaining solution outlined above. This is defined as the price that maximizes
the product of their net benefits, given their threat strategies, which are to deliver the component
without cooperation and pay ci . This product of net benefits (net benefit = profit minus the value
of the backoff strategy on the Pareto surface) then equals (r − �cA − (−�cA))(−r − (−�cB)) and
is maximized for r = �cB/2. However, if B lies and misreports a �c′

B = 2.5, he will only have to
pay 1.25 to A. However, B is unaware of the actual value of cA and cannot even be sure that A
will be truthful. If A sticks to being truthful, B might declare a �c′

B which is even below A’s actual
cost (say, 1.5). In that case, both developers lose. A will now have to pay 1 to B (while under both
agents declaring true prices A would get 2.5 − 2= 0.5). B loses too, since he now develops the
component and makes −5+1= −4 while in the other case he would make −2.5 only. Fearing that
B will lie excessively, A might under-report his own cost as well, to prevent this bad scenario. We,
therefore, see that the Nash bargaining solution might have the nice property of maximizing joint
payoffs, but in the presence of information asymmetry it completely fails. Further work is required
for the examination (or even the possibility) of incentive-compatible mechanisms for contexts like
the aforementioned. Otherwise, efficiency or stability in our market might not be guaranteed.

4.4. Coalition formation

A final issue that we examine is the expected growth of such developer coalitions. We are interested
in examining whether a single large coalition of developers might emerge, or many smaller ones.
The former scenario might stir the attention of market regulators (governments, etc.) in the sense
that a gigantic coalition might be like a big cartel of software developers. If a large fraction of
the available expertise is accumulated inside a large coalition of developers, those outside it might
have a very hard time competing, which undeniably gives the coalition considerable market power.
Regulators must be constantly aware of the implications of the current (or alternative) policies, so
that the market remains as open as possible and consumers enjoy high quality services at low prices.
In actuality, which of the two scenarios (one coalition or more) plays out depends on the rules

and policies inside the coalition. Under the Nash bargaining scheme, despite any counter effects if
information asymmetry is present, we can expect a single coalition to emerge. To see this, consider
that the introduction of a new entrant within the group can never hurt anyone’s profitability. Existing
members have a chance of being better-off, if some of their components overlap with the entrants’,
or indifferent in other cases. Moreover, the larger a coalition gets, the larger fraction of an outsider’s
components is likely to be sharable with incumbents, i.e. the more attractive the coalition becomes.
Under different schemes, though (for example, under fixed charge for participation in the first
place), this dynamic of an ever-growing coalition might be impeded at some point.

5. PROFITABILITY IN A MARKET FOR COMPONENTS

Our exploration so far has dealt with one-shot interactions between software developers. With or
without cooperative decisions, the goal has been limited to the immediate delivery of a single set of
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applications. However, component reusability cannot be limited to the present, but naturally extends
into the future. In other words, building a component today makes that functionality available (at a
price) to all future software developers. Therefore, a reusable component is an investment made by
its original developer and generates a revenue stream for as long as that component is being reused
by other firms.
This, in a way, changes the decision context of developers that consider a transition to SOA

and the component-based paradigm. Both their cost and revenue structures are affected. On the
revenue side, any component developed by a firm is a source of future revenue that must be taken
into consideration at the present. On the cost side, the number (and price) of components already
developed by previous firms at the time of a manufacturer’s entry affect the actual expenses required
by that manufacturer to deliver a new application. An interesting question in this context is how
the market will grow and evolve under different pricing practices.
To answer that question, we build a simple model. To capture the history of the market (i.e. what

has been developed so far) we introduce the concept of a repository of components. A repository
is a public entity, accessible to all, that stores existing components and their descriptions. Whoever
wishes to reuse some of these components must pay a price to their original developers. As soon
as this transaction is verified, the repository grants him access to the components he purchased.
To simplify our reasoning, we make three assumptions regarding the operations of the repository.

First, we prohibit the replacement of a component �, which is already in the repository by another
component �′ with the same functionality built later than �. In other words, we disallow future
manufacturers to redevelop existing components. Second, we assume that all components in the
market are equally popular and reusable, in the sense that all of them have the same probability
to be part of a randomly chosen application. This seems a bit restrictive since, in the real world, a
component that calculates integrals will probably be less used than a component performing web
searches. However, we adopt this assumption because we are interested in constructing a simple
yet meaningful model that explains and predicts market trends. Third, the price for reusing a single
component is assumed to be fixed and uniform across all developers, i.e. a parameter set in the
repository. This way, we do not allow the developers to independently set their prices. We do relax
this restriction though in the next section.
Let us now describe our model. By N we refer to the total number of possible components that

can be built (N is a very large number). Time is discrete and slotted (with slots being numbered 1,
2, . . . , etc.) and one developer appears in every time slot inspects the repository and decides whether
to deliver his application as a package or as reusable components, based on which option gives him
the largest net profit (revenue minus cost). All the developers are assumed to be identical in both
revenue and cost parameters, i.e. all make revenue R and have cost c per module. In addition, let k
be a constant denoting the number of modules per application. Clearly, if any developer chooses to
deliver his application as a package, he expects to get �P = R − kc as the net profit, regardless of
the slot in which he appears. Building components introduces, as before, an overhead �>1 to every
module, expressing the extra work required to implement open standards, handle asynchronous
calls and other technical issues related to the open nature of SOA. However, if a developer chooses
components, he might only have to build a fraction of its application’s functionality. Let then At
be the number of his application’s components that the developer in slot t has to build (meaning
that he found on the average k − At components already developed in the repository). In this case,
if he prefers components, these At components cost him �c each. He also must purchase the rest
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(k − At ) at cost p per component (the fixed reuse price). In addition, the At components that are
developed by the t th developer will generate a revenue for him in the future; we denote this future
payoff as rt . In total, a manufacturer who builds components at time t makes on the average a
net profit equal to �tC = R − (k − Āt )p − Āt�c + r̄t , where Āt = E[At ] and r̄t = E[rt ].
To calculate Āt as a function of t , we reason as follows. Each of the N components is equally

reusable as any other, as per our second assumption. Thus, since each developer requires k of them
for its application, any fixed component has probability k/N to be included in a random application,
or 1 − k/N not to be included. If all developers in slots 1, 2, . . . , t − 1 have built components,
the probability that none of those required the component is equal to (1 − k/N)t−1. Therefore, an
expected number of Nt = N(1 − (1 − k/N)t−1) components have been developed by time slot t .
Now the t th developer requires k components as well. For each of them, the probability of it being
already developed is Nt/N . Thus, an expected number of k(Nt/N) are found in the repository,
meaning Āt = k − k(Nt/N) = k(1 − k/N)t−1.
Similarly, to calculate r̄t , the expected revenue generated by the components of the t th devel-

oper in the future, we reason as follows. There are infinite time slots (starting from t + 1) for
these components to be reused. However, developers employ a discount factor � ∈ (0, 1) for all
future revenues. This implies that $1 received at the next time slot is worth $� now, $1 the re-
ceived two slots in the future is worth $�2 now, etc. We know that a constant amount m of money
in every time slot from now and up to infinity is worth m/(1 − �) at present. This is just the
summation

∑∞
j=1�

jm = �m/(1 − �). In our case, a component placed in the repository at time
slot i will be reused by each future developer (assuming all choose components) with probability
k/N , since all components are equally reusable. Every such reuse will generate p for the compo-
nent’s original developer. And since the t th developer has contributed At components, we see that
r̄t = Āt (�p/(1 − �))k/N .
Substituting the expressions for Āt and r̄t with the formula for �tC , we obtain

�tC = R − kp − k

(
1 − k

N

)t−1 [
�c − p − �kp

N(1 − �)

]

We have, however, in our expressions for Āt and r̄t , assumed that all developers before t and
all developers after it choose components. By studying the above formula, it turns out that, when
p lies in a suitable range, the value of �tC is always greater than �P , so indeed every developer
has reason to choose component delivery. In other cases this is not so. It turns out there are four
subcases for different values of p, which we examine below, also providing some graphs. Assume
for the following that � is sufficiently small and in particular �<1 + �k/N(1 − �). For reasons of
brevity, also define p1 = ((� − 1)N(1 − �)/�k)c and p2 = (�N(1 − �)/(N(1 − �) + k�))c.

• Increasing returns: Our first subcase occurs when p ∈ [p1, p2). Here, the function �tC lies
above �P for all values of t and is increasing in t . In other words, all developers choose
to deliver components and the profitability of this market increases as time passes and the
repository grows. Figure 1(a) shows an example of this subcase (the dotted line in each graph
is �P , whereas the straight line is �tC ).• Decreasing returns: This subcase occurs when p ∈ (p2, c]. Again here, �tC≥�P , ∀t but now �tC
is decreasing in t . This means that all the developers participate, but the net profit of participants
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decreases as the repository grows. Here, first-movers in themarket have the advantage of having
the best possible profitability. An example is shown in Figure 1(b).

• Critical mass needed: This case occurs when p ∈ [0, p1). For such low prices of p, the function
�tC lies under �P for values of t less than a certain threshold. Intuitively, when the repository is
small in size, the components in it are not attractive enough to make manufacturers participate
and contribute more. A critical mass of components must be somehow accumulated to drive
market growth. We have devoted Section 5 to the examination of one such way to build up
this critical mass, namely, the subsidization of early component developers. The graph for this
case is shown in Figure 1(c). Here, the line representing �tC depicts the expected growth of the
market, if a critical mass were to be reached. However, this can only happen if developers to
the left of the intersection of �tC and �P are not self-interested and deliver components despite
packages being more attractive to them.

• Market failure: This case occurs when p ∈ (c, �c). This is simply the extreme scenario of the
second case, in which �tC was decreasing. For very high prices of p, this drops even below
�P at some point and further growth is impeded, since all developers after that point will
simply return to packages. Moreover, any participants before that threshold, knowing that
the market will at some point crash, will recalculate the expected revenue generated by their
components (the horizon is no longer infinite). This will make some developers very near our
threshold abandon components and choose a package as well, leading to further reductions in
the perceived revenues of all previous firms and the threshold moving toward the left (dotted
line in Figure 1(d)). It turns out that, in this case, the cycles of abandonment and threshold
reduction completely decimate the market and, at least mathematically, no firm ever delivers
components. To see that, consider the marginal who participates right on the threshold (say,
at slot j ). He clearly has r j = 0, since nobody after him will select components. His payoff

will then be � j
C = R − (k − A j )p − A j�c= R − kp + A j (p − �c). This must be at least as

great as �P = R − kc, which gives A j≤k(c − p)/(�c − p)<0, which is infeasible for any j .

What is the intuition behind these four subcases? Our simple model ultimately expresses the
profit of a developer at time t in terms of just two factors, namely, the size of the repository at that
time and the price p of reusing a component, relative to the cost �c of developing it anew. Naturally,
the later a firm appears, the larger the repository will be. This translates to a larger number of its
application’s components being already developed. On the other hand, the price p affects the net
profit in two ways: first, it influences the cost of all those components of previous developers,
the current firm will reuse; second, it has an effect on the future revenue to be generated by the
components, the current firm will contribute. In other words, this price is a ‘handle’. A high p means
larger costs for reusing existing components today, but also a high future return on the components
a firm contributes, and vice versa for a low p. These two factors both affect profitability and have
a different ‘weight’ depending on t . For first-movers (low t), the value of p affects them primarily
in terms of revenues, since they do not reuse many existing components. For later entrants, though,
who are expected to reuse a large fraction of their application’s components, p predominantly
affects costs.
In light of these, our first subcase corresponds to the scenario in which p is high enough for early

entrants to actually benefit from building and contributing their components and also low enough
for future participants to benefit from reusing them. The second case is similar, but now p is slightly
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higher, resulting in first-movers gaining more and latecomers benefiting less; thus the profitability
function appears decreasing. The latter two cases are extremes of the former two. In the third case,
p is so small that, while latecomers would reuse existing components almost for free, early entrants
find no benefit in contributing any components. Finally, the fourth case is the exact opposite. Here,
p is almost equal to the cost of developing a component anew. Therefore, latecomers have very
little incentive to participate. Even if they develop just a single component, the factor � is enough
to drive them away from this market, since very little is to be gained by reuse. This propagates all
the way back to the first developer and the market fails.
Simple as our model seems to be, it clearly includes four interesting scenarios for the develop-

ment of a component market. Moreover, these scenarios exhibit radically different final outcomes
regarding the market’s state after some time. By varying just a single parameter (p), we obtain the
complete spectrum of cases and results. This has very troublesome implications for the repositories
that plan to operate in such a market since, basically, the pricing practices employed may affect the
growth and profitability of every participant in it, or even totally obstruct its development.
Moreover, one should carefully consider the degree of freedom in this repository (or market).

Here, we have assumed that a fixed price p is set by the repository for every component reuse. What
can we expect to happen if developers were allowed to freely choose prices for their components?
The next section is devoted to examining this scenario.

6. SUBSIDIZATION FOR CRITICAL MASS

In the previous section we identified four possible cases for the growth of a component market. In
particular, we saw how the choice of a single parameter, namely, the price of reusing an existing
component affects how our market will evolve in the long run. This section is devoted to examining
one of these cases, and in particular the one where the need for critical mass arises (Figure 1(c)).
Under this scenario, when the market is young and the repository contains very few (or even no)
components, developers are (on the average) better-off choosing to deliver their applications as
packages. This happens because the price p of reusing a component is too small. First-movers
in this market do not obtain any benefit, because the repository is small and thus they do not
find enough existing components to reuse. When p is high, this adversity is offset by the revenue
their initial contributions are expected to generate. But with a very low p delivering components
is not a preferable choice for these first-movers. Remember however that, if the repository could
somehow obtain critical mass and grow out of this phase, this low p would actually become the
reason why developers have an incentive to participate, since they now get a large fraction of their
applications’ functionality for almost no charge. Therefore, one may identify a threshold in the
number of components; let that be N∗. For any number of components in the repository N<N∗,
a randomly chosen developer is expected to prefer delivering its application as a package; for any
N≥N∗, it is expected to prefer delivering components. In the following, we assume that p is so
small that it may be considered negligible, i.e. p≈ 0.
But how is this critical mass of N∗ components to be obtained? One could imagine a voluntary (or

non-profit) development of these initial components as a solution, but this unfortunately provides
no guarantees as to whether our critical mass will ever be reached. Another option would be to
simply let the system slowly achieve it. Remember that the ‘average’ developer prefers to deliver a
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package when N<N∗. However, a developer might get lucky and find (even in a small repository) a
large enough fraction of its application’s functionality. In this case, it will willingly contribute some
more components causing the repository to grow a bit. This will, of course, be a rare occasion at
first, but will become more frequent as time passes. We henceforth refer to the system that operates
under this mechanism as S1.
System S1 will eventually reach critical mass provided that it starts with a sufficiently high num-

ber of Ninit initial components, which we explicitly calculate later. After the repository obtains
critical mass, the average developer will choose to deliver components and the system will grow
at a reasonably high pace. However, until this happens, a lot of developers will have examined
the repository and decided not to deliver components, but stick to the option of a package. This
will occur simply because, for these developers, not enough components required by their appli-
cations will be found in the repository to actually give them a cost benefit through participation.
However, each manufacturer who delivers a package imposes a loss upon society. This is because
any functionality in its package will not be made available for reuse to any future manufacturers
(package modules are assumed, as always, non-reusable). Developers in later times that happen to
require some of that functionality must rebuild it. Thus, a module is built over and over again and
society (as a whole) incurs many times the cost for constructing a piece of software that could,
under the component scheme, be developed only once and then be reused. The total loss can be
defined as the cost of all modules that are manufactured by each developer until the repository of
components is complete. Afterwards, at least theoretically, software comes at no extra development
cost.
If the delay associated with building a software module as a component in system S1 constitutes

a social loss, we might try to measure it. To this end, we build a stochastic model that is based
on many of the assumptions of our previous models (in Section 4). In short, an application is
made up of k modules (a constant), each costing c to develop. A price p is charged for reusing
any existing component, which is too low to generate critical mass phenomena in the market
(p≈ 0). Developers who choose to deliver a package make some revenue (R) out of the market
and have cost kc. If they deliver components, they examine the repository and identify the number
of components (say a) that are part of the application they would like to offer. This translates
to a profit of R − ap − (k − a)�c≈ R − (k − a)�c. Depending on which option gives them the
highest profit, they either deliver a package (in which case the repository remains unchanged)
or components (in which case they contribute their k − a new components). For components to
be attractive, it must be (k − a)�c≤kc, which implies a≥k(� − 1)/�. Let us refer to the least
integer that satisfies this condition by m, i.e. m = �k(� − 1)/��. Therefore, for a repository to
reach critical mass under system S1, it must initially contain Ninit≥m components, which have
been created voluntarily; otherwise, no developer will ever rationally choose components in the
beginning. Furthermore, these firms gain extra revenues generated by future developers who reuse
their components. However, since p is very low, wemay assume these extra revenues to be negligible
as well.
Depending on the size of the repository (say n), the variable a follows a probability distribution.

If all components are assumed to be equally reusable (i.e. none are more popular than others), then
each of the k components in an application is found in the repository with probability n/N , where
N is the total possible number of components. Therefore a, which is the number of components
already in the repository to be reused by the developer to join at the present step, follows a binomial
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Figure 2. System S1: growth in the unsubsidized market.

probability distribution:

Pr(a = �)= k!
�!(k − �)!

( n

N

)� (
1 − n

N

)k−�

We may thus represent our system as a Markov chain with N states. State si stands for the event
‘the repository contains i components’. In every step the chain moves from state si to state s j ,
where j>i , j≤i + k − m, with probability Pr(a = k − ( j − i)|n = i). Here, k − m is the largest
possible step the chain can make, i.e. the largest possible number of components a new developer
may ever contribute. If very few components are found in the repository, i.e. if a<m, the entrant
switches to a package. To capture that, the probability of our chain not changing state is defined
equal to (i/N)k + Pr(a<m|n = i). The first term equals the probability of the event ‘entrant finds
all k components’, while the second terms equals the probability that the entrant finds less than m,
the minimum required for it to prefer delivering components to a package.
Simulations of system S1 exhibit a shape similar to that of Figure 2. Notice how, close to the

beginning of time, when the number of components in the repository is small, delays are very
frequent and thus the market grows very slowly.
How could we improve this? Let us design another system S2, which includes a subsidization

scheme. In particular, whenever a developer finds too few components in the repository to actually
have an incentive to participate, we subsidize this developer by the exact amount that will make the
two options (package, components) equivalent in terms of profitability. For instance, if delivering
a package leads to a profit of $30k for the developer while components lead to a profit of $20k, we
provide the developer with the remaining $10k. This way, no developer ever chooses a package and
the social loss due to non-reusable code being manufactured is minimized. Simulations of system
S2 give a growth pattern similar to Figure 3.
But in S2 the amount of subsidies may also be considered a social cost. Using simulations,

however, we have discovered that under S2 the cost of developing all N components in the repository,
including any subsidies, is still less than the cost under S1 without subsidies. A characteristic example
is with N = 10 000, k = 5, c= 0.6, � = 1.2 and p= 0. Under these values for our model, S1 gives
a total cost of 14 500, whereas S2 gives 11 245 (of which subsidies are only 945). This implies that
there is a cost saving of 22% under system S2.
We, therefore, see that subsidizing component development is particularly beneficial. First, it

accelerates market growth, since the initial ‘lag’ in our market’s growth is avoided. Second, it
minimizes social losses due to software modules being developed over and over again within
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Figure 3. System S2: growth with subsidies.

packages and thus not being reusable. Even in the presence of subsidies, this still gives less total
expenditure for software development, compared with the case S1 where the market is left to grow
on its own. Furthermore, these subsidies can be later retrieved by taxing component reuse. When
the repository grows enough and most developers have a clear incentive to participate and deliver
components, taxing reuse will not obstruct this trend, but generate revenue that may completely
cover the initial expenses (on subsidies), or even give the repository a small return on its investment.

7. PROFIT-MAXIMIZING PRICES IN PAY-PER-USE

A repository of software components might be thought of as an entity with different roles and
responsibilities. In Section 4 we have developed a simple model that captures critical aspects of a
market for components, by assuming the repository capable of identifying and enforcing a fixed
uniform price p for every instance of software reuse. However, onemight also consider an alternative
scenario, in which the developers of components set prices for their own code. Having gained some
understanding as to the possible outcomes in our market, depending on the prevailing prices, what
should we expect in such a context of decentralized price setting?
Note also that developers of software applications have been assumed to purchase existing com-

ponents directly from their respective manufacturers, through the repository. However, one of the
aspects of software-oriented architectures is the concept of pay-per-use, whereby end-users are
charged according to their actual usage (number of calls, workload, etc.) per component they in-
voke. This practice signifies a different pattern in the market. Now all components lie within a
system that does not simply describe and resell existing functionality, but also offers computing
infrastructure and networking features to actually run the code (e.g. a Grid system). Under this
scheme, developers who reuse existing code no longer need to purchase it from other manufactur-
ers. In fact, we assume that developers do not resell each others’ components. They simply develop
the components that ‘complete’ their application, add them in the system and use the interfaces
of existing components to communicate with them and perform any operations. Manufacturers of
components, whose functionality is included in these new applications, gain revenue through end-
users who express their demand on the applications and invoke the manufacturers’ components in
the process. As an example, imagine firm A having developed an application made up of k = 20
components stored in the Grid system. Users of A’s application have to pay a price (say $0.1) every
time they invoke a component in this application. Now imagine another firm B appearing after A
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and wishing to deliver a new application, made up of 20 components as well. However, assume that
3 of these components have already been developed for A’s application, so B plans to reuse them.
Very simply, B develops the remaining 17 components to ‘complete’ its application and adds them
in the system. Suppose then B requires a price $0.2 per component invocation. Users who select to
execute B’s application are therefore charged $0.2 every time they invoke one of the components
developed by B and $0.1 every time they invoke one of the 3 components of A that are being reused
in B’s application. This way, B need not purchase those 3 components directly from A, since the
latter simply gains through the invocation of its components by B’s customers.
To explore what happens in a market of pay-per-use where developers are free to choose the prices

for their components, let us assume that all manufacturers deliver their applications as components,
i.e. no one builds a package. We also assume that all developers are identical and have cost c to build
a component. (Notice that we drop the factor � since all modules are developed as components.)
However, developers still face a dilemma. If some of the components in their applications have
already been developed, they may either reuse them or build them anew. In the first case, they avoid
any development costs, but they allow the original manufacturers of these components to affect
the price their users will have to pay when using the application. In the second case, since they
redevelop the existing components, they are free to set prices for them, but they must also pay c
per such component for their redevelopment.
End-users are, of course, affected by the pricing decisions of manufacturers in this market.

A higher price per component invocation means fewer users actually using it (or less frequent
invocations). To put it simply, the market has a demand function d(p) that determines the total
number of invocations for an application’s components, over its entire lifetime, as a function of the
price required per invocation. For the sake of simplicity, let us assume that all components in an
application are equally used, in the sense that a run of the application invokes all its components
an equal number of times. Therefore, the number of invocations of any component within the
application is proportional to the number of executions of the application itself. Thus, we may treat
d(p) as a function giving the total calls to the application, as a function of the sum of its component
prices. For instance, if an application consists of components � and � and the price per invocation
of those is p� and p�, respectively, this application will be called d(p� + p�) in total.
Let us now construct a simple example to investigate what happens in such a context. Let firms

A and B, as before, each having an application to develop are made up of only 2 components. Each
component costs c to develop for both firms. Let however one of these components be common
in both applications to allow the possibility of reuse. In particular let A’s application consists of
components � and �, while B’s application is made up of components � and �. The demand for the
applications is identical, linear and given by the function d(p)= b − ap, where b, a are positive
constants. Firm A appears first in the market and delivers its two components. Since A is free to
choose prices, it is reasonable for it to select a sum of prices that maximizes its expected revenue.
Let p�, p� be the charge for the two components, respectively, in A’s application. Then, every user
who executes this application must pay p�+ p�. Thus, A will choose {p∗

�, p
∗
� } = argmaxp�,p�{(p�+

p�)d(p� + p�)} = argmaxp�,p�{(p� + p�)(b − a(p� + p�))}. Solving this gives p∗
� + p∗

� = b/2a.
Notice that any combination of p∗

� and p∗
� that sums to b/2a is optimal in the sense of profit-

maximization.
Let us now turn our attention to firm B. In its effort to deliver its application, B actually has two

choices: either reuse the common component from A, or build it anew. The reasoning of B in the
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latter case is identical to A’s in the previous paragraph; that is, it must simply choose p∗
�+ p∗

� = b/2a
and incur a cost of 2c. In the case of reuse, on the other hand, B need only develop the non-common
component � (and pay only c). But now the demand for its application is given by d(p� + p�), i.e.
is affected by both developers’ decisions.
This setting is very similar to leader–follower Stackelberg games, e.g. see [19, p. 159]. The

reasoning starts with B, the firm that plays last. Suppose B observes a price p� for the common
component that was developed by A. Then, B should choose p� to maximize p�(b− a(p� + p�)).
This gives p∗

� = b/2a − p�/2.
Knowing how B will choose its optimal price, we now turn to A, who wishes to maximize

the joint revenue from both its own and its share of B’s application. Clearly, A should only care
about the latter term. If the revenue generated by its share from B’s application is maximized for
a price p̃�, it can simply select this for the common component and price its other component
p� = b/2a − p̃�, so that the sum of these two prices equals the revenue-maximizing total price
for A’s application (which is b/2a). Therefore, A chooses p� to maximize p�d(p� + p�), where
p� = p∗

� = b/2a − p�/2. Solving for this gives p∗
� = b/2a, which is the maximum possible price.

However, A is not free in its choice of price for the common component. This is because B is
not bound to the option of reuse. In other words, B will reuse A’s component if its profit through
reuse is at least as great as its profit through the redevelopment of the common component, i.e.
there should apply p�(b − a(p� + p�)) − c≥b2/4a − 2c. This profit of b2/4a − 2c is always
possible for B to attain, since it can simply price component � for zero and � for b/2a. This
way, B retains its competitiveness against A in terms of the common component �. Knowing
this, A cannot select p∗

� = b/2a as its price for the common component. Instead, it must choose
a smaller price, such that B will be indifferent between reuse and redevelopment. This price is
p∗
� = (b − √

b2 − 4ca)/a. Seeing this, B chooses p∗
� = b/2a− p�/2= (

√
b2 − 4ca)/2a. This way,

the total price for B’s application becomes p∗
� + p∗

� = (2b − √
b2 − 4ca)/2a.

It is easy to observe that this price is always greater than b/2a, the profit-maximizing price for
B’s application without component reuse. What does this imply? Both developers A and B benefit:
A because through components it is able to get a share of the demand for B’s application, and B
because it manages to increase its net profit by only developing one of the two components for
its product. However, end-users lose since the application is now offered at a higher total price.
This is due to the phenomenon of double markup [20, pp. 475–477]. What this basically says is
that both A and B select prices to maximize their individual revenues, and not the joint revenues
from the application as a whole. This way, A performs a price-maximization operation (for its own
share) and B receives the output of this as input to its own (second) profit-maximization step. If
there were a single step, maximizing profits would be equivalent to maximizing the revenue for the
application as a whole (i.e. select b/2a for both components together). However, with two steps in
the process, A adds a ‘cap’ (markup) to p�, then B adds a second one to p� without acknowledging
the effect of the first cap. Therefore, the application as a whole ends up being more expensive.
A higher total price for the application translates, of course, to less total revenue (jointly for

A and B). Since b/2a was the revenue-maximizing total price, any other price (higher or lower)
gives suboptimal total revenues. Furthermore, this result is neither limited to the case of just two
components per application, nor to linear or identical demand functions. The simple example above
was employed to illustrate the effect of the double markup phenomenon, through specific and
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easy-to-compute formulas. It can be argued that, unless a totally irregular demand function is
assumed, the qualitative aspects of our results hold true.

7.1. Conjecture on market expansion

This double markup is the first inefficiency in a pay-per-use market where developers are free
to choose the prices. A second inefficiency can be derived by examining the evolution of such
a market of pay-per-use charging and profit-maximizing firms. In particular, we conjecture that
at some point this market will cease to expand and new developers will start redeveloping the
existing components. To see why this would happen, consider double markup again. It can be
seen that, if double markup is significantly worse than the single revenue-maximization, triple,
quadruple, etc. markups are even worse in terms of application prices and revenues. Qualitatively,
as time passes and more components are made available in the market by new entrants, a larger
fraction of a new application’s functionality will already be developed by the time its manufacturer
appears and wishes to deliver it. Moreover, for components that are being reused, the set of previous
manufacturers that offers them is expected to keep growing. This ultimately results in more firms
sharing the revenues out of a new application as the market grows. A higher-order markup will
mean a higher price and thus less total revenue from the application as a whole, divided among
a larger number of participants. Thus, intuitively, the profitability related to reusing the existing
components diminishes for new entrants in a growing market.
Under the above framework, if the prices are left unchanged, the profit of new entrants related to

reusing existing components will soon become less than the corresponding profit of redeveloping
them anew. If this occurs, then the industry will cease reusing components. At that point, those
already reusing components will still enjoy some profitability, but no new entrants will be attracted
to reuse. To make component reuse attractive to a new entrant, existing developers would have
to decrease the prices for their components. However, this would also decrease the revenue they
currently obtain from existing firms that reuse their components. Naturally, at some point the extra
revenue generated by a new entrant will become less than the loss of revenue generated by the
existing reusers of components, so a price reduction will not be preferred. With existing component
developers being better-off maintaining their initial high prices, new entrants will start redeveloping
components.
Moreover, we see that early-movers in this market have a clear advantage. On the one hand, they

reuse very few components, which come from very few previous developers, since the market is
young. Thus, the actual price of their application is kept relatively low, the total revenue remains
high enough and is shared among just a few participants. Plus, as near-future entrants will face a
similar situation, early-movers can also price their components relatively high, to exploit a large
enough fraction of those entrants’ revenues. As time passes, though, the effects of double (or
higher-order) markup will lead to much fewer revenues than those of the first-movers.
To summarize this section, we have formulated a model that provides an insight on the market

evolution and the developers’ profitability, for the case where participants are freely allowed to
choose the prices for their components and these are made available to end-users under a pay-
per-use scheme. Our main result is that, due to double (triple, etc.) markup the total price of an
application increases and consumers are thus made worse off. This constitutes a major inefficiency
in this market. Moreover, due to this double markup phenomenon, the profitability of new entrants
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in such a market diminishes as time passes. To sustain the increase in the number of reusers,
existing participants would have to compromise their prices. However, reducing prices for existing
components might not be a profit-improving action for them. Therefore, when considering the
freedom developers might have, it would always be nice to keep in mind that a totally ‘free
economy’ might not be the socially optimal choice.

8. CONCLUSION AND FUTURE WORK

In this paper we have approached the concept of service-oriented architectures from an economic
point of view. In particular, we have examined the transition of the software market from its present
state (in which the business model of licensing predominates) to a market of components. This
constitutes, at the technical level, a more modular scheme for building and delivering software.
On the economic side, it calls for new business models that promise to take advantage of the
features in this software industry. Developers may exploit the inherent overlap in their applications’
functionality to share the costs of any common modules. Plus, they may be able to generate extra
revenues by making their components available for reuse (at a price) to potential future developers.
Such a market has not been thoroughly studied and its complexities are yet to be fully understood.
We hereby attempt a first approach in modeling some of its crucial aspects with a view to gaining
valuable intuition as to the peculiarities of its growth and evolution.
We first examined one-shot cases of component production. By formulating a simple game in

Section 3, we shed light on the risk in delivering one’s application as components without prior
negotiation/cooperation with other developers. In that case, developers are safest in preserving their
current license-based model. This naturally leads to Section 4, which focuses on the implications of
inter-developer cooperation. Deciding on which developer builds which components, the exchange
price and the incentive for one to be truthful were some of the issues explored.
Moving beyond one-shot interactions, Sections 5–7 investigate the market as a whole. Section 5

examines the growth and evolution of a market of components through the existence of a repository.
By varying just a single parameter, the price of reuse, we were able to identify four interesting
cases regarding the market trends. In some instances we identify a clear advantage of delivering
components to all manufacturers, while in some other cases a critical mass has to be reached for
the market to be jumpstarted. Finally, in an extreme case we even proved that the market will
completely fail.
Section 6 focuses on a way to attain critical mass in our market by subsidizing component

development early on. We show through experiments that subsidies of this kind not only accelerate
market growth but also reduce the overall expenditure of society on software development.
Finally, Section 7 analyzes the context of a ‘free economy’ in our market, meaning that software

developers are able to choose the prices for their components so as to maximize their individual
profits. This scenario is examined under a pay-per-use scheme, in which end-users are charged
according to their actual usage (number of invocations) per component. Our results indicate that
consumers are made worse off due to double markup effects leading to higher application prices.
Furthermore, first-movers in this market enjoy a clear advantage in terms of profitability. However, as
time progresses, the existing developers’ selfish profit-maximizing behavior becomes an impediment
to attracting new reusers in this market.
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In our future work we plan to further analyze the behavior of such a market. Specifically, we
intend to study models in which components are differentiated between popular and less valued,
in order to obtain some understanding on whether developers of more frequently used components
accumulate any market power, which could lead to higher prices. Furthermore, we wish to study
the dependencies between components. For instance, if component � calls component � during its
operation, �’s value increases in the presence of �; if these components are provided by different
manufacturers, the developer of � might be able to request some of the revenue generated by �. This
might also hold for longer dependency chains and it would be interesting to study the implications
of those in pricing and market power. Finally, we would like to study the effect of proprietary
components. If a large software manufacturer makes its components available but also controls,
which other components are allowed to interact with them, this asymmetry might affect market
evolution and lead to the concentration of power.
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