
Simple Economic Management Approaches of Overlay Traffic in Heterogeneous Internet Topologies

European Seventh Framework STREP FP7-2007-ICT-216259

A Framework of Economic Traffic Management Employing Self-organization Overlay Mechanisms

Simon Oechner¹, Sergios Soursos², Ioanna Papafili², Tobias Hossfeld¹, <u>George D. Stamoulis</u>², Burkhard Stiller³, Maria Angeles Callejo⁴, Dirk Staehle¹

- ¹ University of Würzburg
- ² Athens University of Economics and Business
- ³ University of Zürich
- ⁴ Telefónica Investigación y Desarrollo

IWSOS Vienna, Austria December 10, 2008

Outline

Introduction

Analysis of key concepts

- Interworking of SOMs and ETM
 - Application in BitTorrent
- Concluding remarks

Introduction

Motivation

- P2P applications have become very popular, but lead to:
 - Significant and increasing amount of P2P traffic
 - Suboptimal selection of peers due to information asymmetry
 - Underlay topology unknown to overlay
 - Overlay requirements unknown to underlay
- Consequence: Non-optimized overlay traffic in the underlay:
 - Higher costs in the underlay for the ISP
 - Lower QoS in overlay for the application provider and his users
- Conventional traffic management techniques not suitable

The FP7-ICT Project SmoothIT

Simple Economic Management Approaches of Overlay Traffic in Heterogeneous Internet Topologies

- Main objectives:
 - Bridge information gap between overlay and underlay
- Approach: Economic Traffic Management (ETM)
 - Main tool: incentives of stakeholders
- Duration: January 2008 December 2010
- Consortium: 4 industrial and 4 academic partners

Analysis of Key Concepts

Incentives' Mechanisms

- Incentives' mechanism: Offers selections to participating agent
 - Each agent responds selfishly
 - → Performs selections so as to improve own benefit
 - Individual benefit may also depend on other agents' decisions
- Examples of user incentives offered by mechanisms:
 To attain improvement of :
 - the tradeoff between QoS and charge levels
 - the "long-term" value received, e.g. by means of a reputation-based mechanism encouraging contribution

Stakeholders and their Incentives (I)

Stakeholders: ISP, overlay provider, user

Economic incentives classification:

1. Monetary

- Reduction of providers' costs, increase of their income
- Value-for-money for users

Performance-related

- Applies to both overlay and underlay
- Of particular interest to users

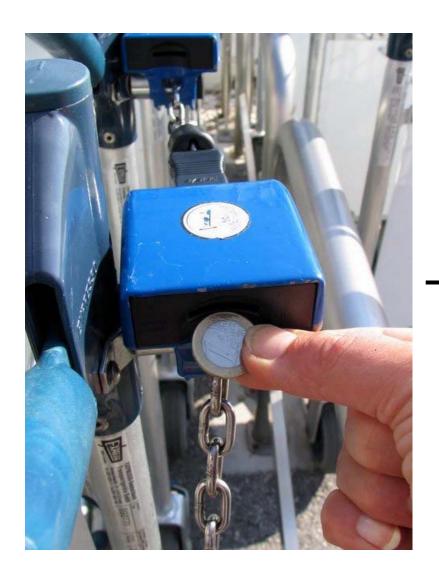
3. Reputation

Applies to providers → leads to increased user-base

Stakeholders and their Incentives (II)

Users and the application provider have compatible incentives

- Overlay and ISP may have conflicting incentives;
 e.g.:
 - improvement of overlay performance may lead to higher inter-domain traffic and costs



Win-win-win (TripleWin) Situations

- The incentives of all stakeholders promoted simultaneously
 - possibly heterogeneous incentives
- Example: "Locality aware" file-sharing:
 Promoting downloading from local peers may:
 - improve overlay performance and
 - reduce ISP inter-domain traffic and its charge
- Increase of providers' monetary income can be attained with performance differentiation

A First Example

Economic Traffic Management (ETM)

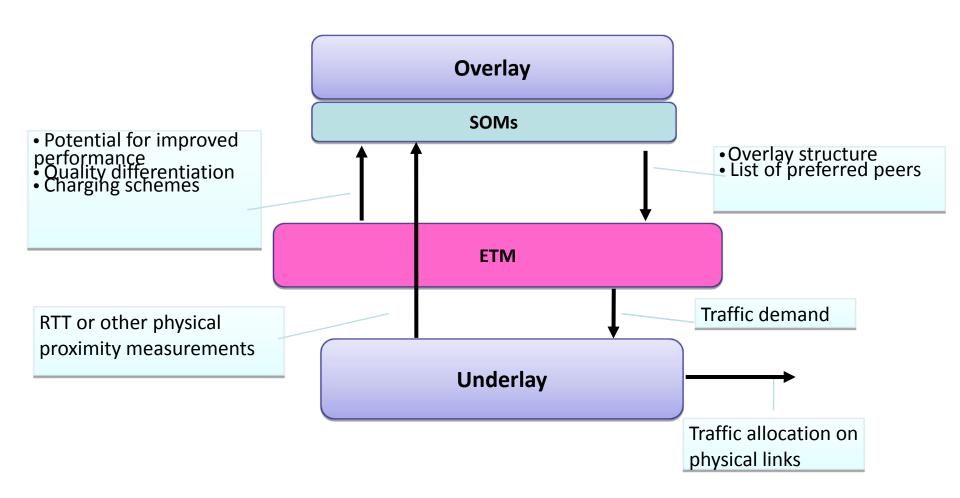
- Employs economic incentives' mechanisms for overlay traffic control and management
- Desired effect:
 - 1. User selects the individually optimal choice
 - 2. This affects the traffic patterns beneficially for the ISP
- ISP, through ETM, shapes users' behavior and drives system to a desired state by means of:
 - providing underlay information; e.g. RTTs
 - employing underlay policies; e.g. QoS differentiation

Self-organization Mechanisms (SOMs)

- SOMs run in the overlay and aim at improving some application-level characteristic(s):
 - response times
 - degree of availability

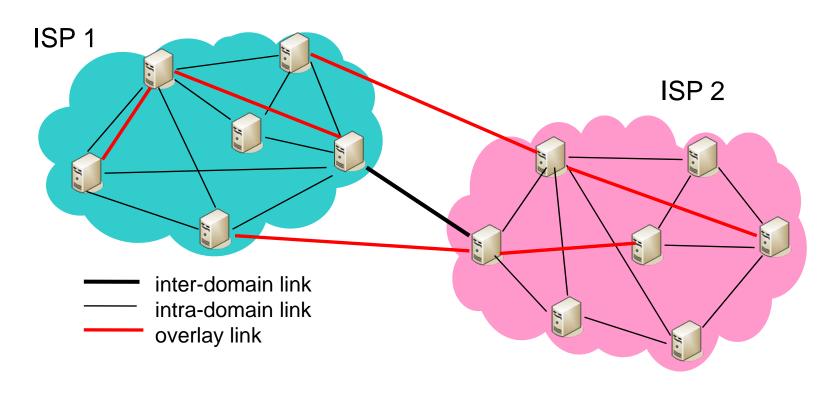
- □ The SOM's algorithm ran by each peer
 - employs information provided by other peers or the underlay
 - evaluates alternative selections by means of a metric:
 - Reputation, content similarity, RTT, ...
 - makes local decisions that achieve self-optimization
 - in interplay with the decisions made by other peers

Interworking of Self-Organization Mechanisms and Economic Traffic Management


ETM and SOMs

- SOMs can serve as the economic incentives' mechanisms employed in ETM
 - Advantage: the distributed nature of overlays is exploited
- The ISP should influence the evolution of the SOM and ultimately the overlay traffic patterns
 - Mainly by providing information to the SOMs
- Not all SOMs can enable ETM → appropriate SOMs:
 - Provide selections to peers that offer immediate incentives related to the underlay:
 - e.g. bandwidth-based selection of the peer to download from:
 - "tit-for-tat"

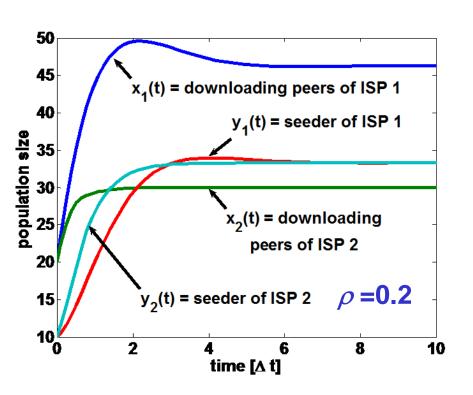
Interworking of SOMs and ETM

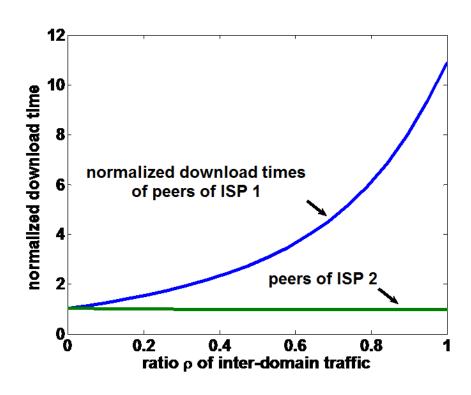


Example: ISP-aided BitTorrent

- ISP aids BitTorrent peers select "close by" peers, by:
 - Providing proximity information (AS, RTT etc.) to trackers
- Trackers suggest to peers those that lead to the highest downloading throughput
 - plus some randomly selected peers
 - to avoid network separation
- The approach can lead to a win-win-win situation

Evaluation Setting




- ISP1 blocks incoming interdomain traffic
- ISP2 employs ETM approach
 - A portion ρ of uploads at ISP1 peers are destined to ISP2
- Analysis by means of Fluid model by Qiu & Srikant

Evaluation Results

- ISP2 outperforms ISP1in terms of:
 - Effectiveness in completion of downloads
 - Downloading times per chunk

Implementations of ETM

- 1. With active overlay provider, who is offered incentives to modify protocol, e.g. Tracker
- Transparently for overlay provider, but still leading to improved overlay performance
 - User is offered incentives by ISP
 - Proximity information for other peers, by ISP's information service
 - Option for enhanced QoS: HighThroughputData & MMStreaming
 - Alternative: active participation of ISP to overlay
 - ISP-owned peers, caching

Concluding Remarks

Contribution

Presented a new framework:

Economic Traffic Management that employs Self-Organization Mechanisms

- Analyzed:
 - the incentives of stakeholders and their relations
 - the interworking of SOMs and ETM: conditions and possible implementations
 - a first application of ETM in BitTorrent
- SOMs can successfully serve as enablers for ETM

Further Work

- SmoothIT has already specified a variety of ETM approaches:
 - ISP-managed information service, for Locality promotion and QoS/QoE differentiation
 - ISP-owned peer, that can perform active caching
 - Distributed ETM, performed autonomously by peers, routers etc.

and defined the architecture

Future work:

- Evaluation of ETM approaches
- Validation by means of laboratory and external trials

Trends in Overlay Traffic Management

- Management of overlay traffic is a hot topic
- Several approaches take collaboration between ISP and overlay provider (or user) for granted
 - SmoothIT does not necessarily rely on such a collaboration;
 it may only apply in conjunction with incentive compatibility
- Most approaches apply to file-sharing:
 - SmoothIT ETM approaches and/or their intelligence are innovative and address both file-sharing and peer-to-peer streaming

Thank you for your attention!

More information in: www.smoothit.org

Thanks to all SmoothIT's project partners:

UZH, DOCOMO, TUD, AUEB, PrimeTel, AGH, ICOM, UniWue, TID

Supporting Material

SOMs and Incentives

Possibilities w.r.t. the selections provided by a SOM

- 1. No selections: e.g. DHT-based content location in Chord
- 2. Selections not offering immediate incentives: e.g. list of Kademlia-based neighboring peers
- 3. Selections offering immediate application-layer incentives: e.g. which chunk to download first in BitTorrent: "rarest first"
- 4. Selections offering immediate incentives related to the underlay: e.g. bandwidth-based selection of the peer to download from: "tit-for-tat" Mainly these SOMs can enable <u>ETM</u>

