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We consider a single link loss system where the arrival rates are determined by prices.
We examine two economic models, one where prices are set to maximize revenue, and the
other where prices are set to maximize total social welfare.

1. INTRODUCTION

Loss systems are widely used to study the performance of the provision of guaranteed
services by telecommunication networks, where the amount of available resources are
�nite, and a customer that arrives requesting a certain amount of resources results in either
being accepted, or being blocked due to the unavailability of the requested resources. An
important performance measure is the probability that such requests are blocked, which
depends on the overall request rate, the amount of resources required by the various
request types, and the total amount of resources available in the system.
The issue of interest to us here is the role that prices can play in controlling the per-

formance of such blocking systems. A network operator could, by charging customers,
in
uence the rates at which requests for di�erent services arrive (the demand), and hence
control the way the network will be loaded and the amount of blocking di�erent customers
will experience.
In this paper we construct and analyze two economic models that relate to the above

observations. For simplicity, both models are discussed in terms of a network consisting
of a single link, which has N `circuits'. The �rst corresponds to the case of the network
manager acting as a monopolist, which sets prices to maximize the total revenue obtained
from the system. The second corresponds to the other extreme where the goal of the
network manager is to set prices in order to maximize the total utility (social welfare)
obtained by the users of the network. In this case, the utility of a user is a function
capturing his preferences in terms of the frequency of placing calls and the potential
negative e�ects of call blocking. An essential feature of our approach is that it involves an
asymptotic analysis, in the regime where both the available capacity and potential load
grow to in�nity. For the revenue maximization problem we show that, as N !1, under
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optimal prices the link is either underloaded or critically loaded; it is never overloaded.
For the social welfare maximization problem we show that, as N !1, the link is always
critically loaded. These �rst order asymptotic results are then supplemented by second
order asymptotics for critically loaded systems.
The paper is organized as follows. In section 2 we state the two optimization problems,

and in section 3 we review known asymptotic results for the calculation of the blocking
probabilities. In sections 4 and 5 we present our results for the revenue and utility
maximization problems respectively.

2. THE OPTIMIZATION PROBLEMS

The model we consider consists of a link with N circuits and J call types. Calls of type
j, 1 � j � J , arrive as a Poisson process of rate gj, have mean holding times �j, and
require Aj circuits (with Aj � 1 an integer). If there are fewer than Aj idle circuits when a
type j call arrives, the call is blocked and lost. We consider two problems that are related
to the optimal setting of prices for such a link. The �rst concerns the maximization of the
revenue by the network operator, and the second concerns the optimization of the overall
bene�t of the customers that use the system (social welfare).
The revenue maximization problem is formulated in terms of demand functions gj,

1 � j � J . Suppose that, given prices w = (w1; : : : ; wJ) for the J call types, the arrival
rates are g1(w); : : : ; gJ(w). Let Bj(N ; g(w)) denote the blocking probability of type j calls
in a link with N circuits and arrival rates g1(w); : : : ; gJ(w). Each accepted call of type
j pays the network operator wj. Blocked calls pay nothing. The revenue maximization
problem is the following:
Maximization of Link Revenue (MLR):

max
w

r(w) =
JX

j=1

wjgj(w)[1� Bj(N ; g1(w); : : : ; gJ(w))] : (1)

Using the known expression for Bj, the problem of maximizing link revenue can be
turned into a (typically complicated) nonlinear optimization problem. Our goal here is to
use asymptotics to gain a better understanding of the structure of the optimal solution.
Towards that end we make some intuitively reasonable assumptions about the form of the
demand functions.
Let �(w) =

PJ
j=1Aj�jgj(w). For 1 � J < 1, the J dimensional nonnegative orthant

is denoted by RJ
+ = fx 2 R

J : 0 � xi < 1; 1 � i � Jg, and its interior is denoted by
R
J
++ = fx 2 R

J
+ : 0 < xi < 1; 1 � i � Jg. We assume that, for each j, 1 � j � J ,

gj : R
J
++ ! R+ is continuously di�erentiable, and that, for w 2 R

J
++ :

(A1) if gj(w) > 0, then
@gj(w)

@wj
< 0 ; 1 � j � J , (A2)

@gj(w)

@wi
� 0 ; 1 � j 6= i � J ,

(A3) if �(w) > 0, then
@�(w)

@wj
< 0 ; 1 � j � J , (A4) lim

w!1
�(w1) = 0,

and

(A5) for any � > 0 there exists a K� <1 such that
@gj(w)

@wj
> �K� if wj � �j, 1 � j � J .
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Assumptions (A1) and (A2) are related to monotonicity in demand for individual call
types. Assumption (A1) indicates that when the price of a call type increases its arrival
rate decreases, while assumption (A2) indicates that there is a possible substitution in
the form of an increased arrival rate of other call types. Assumption (A3) states that the
total o�ered load is decreasing in the prices of all call types. Assumption (A4) expresses
the natural condition that as all prices increase, the total o�ered load decreases to zero.
Our assumptions do not rule out unbounded demand, but (A5) allows unbounded demand
only for very small prices.
The social welfare maximization problem is formulated as follows. There are J call

types as before. There are I customers that share the use of the system, and customer i,
1 � i � I, generates a Poisson stream of calls of type j with rate gij, 1 � j � J . We let
U i(gi1; : : : ; g

i
J ;B1; : : : ; BJ) denote the utility function for customer i (in the simplest case

the utility is a function of gij(1� Bj)). The social welfare of the above system is de�ned

as the sum of the bene�ts of the customers, i.e., the quantity
PI

i=1 U
i.

Since all customers share the link, the blocking probability Bj is the same for all cus-

tomers, and hence is a function Bj(N ; g1; : : : ; gJ), where gj =
PI

i=1 g
i
j is the total arrival

rate of calls of type j. The problem of maximizing the social welfare now becomes
Maximization of Social Welfare (MSW):

max
gij ;1�j�J;1�i�I

IX
i=1

U i(gi1; : : : ; g
i
J ;B1(N ; g1; : : : ; gJ); : : : ; BJ(N ; g1; : : : ; gJ)) : (2)

A traditional approach for solving MSW is by using prices. The network operator
posts prices wj for accepting calls of type j; the customers adjust their call arrival rates in
order to maximize their total net bene�t, which is their utility for using the above arrival
rates at the particular operating point of the link minus the cost they must pay to the
network. An equilibrium in such a system is a set of prices under which the customers do
not have the incentive to change their arrival rates gij. A desirable property of such an
equilibrium is that the corresponding arrival rates also solve MSW .
We state some interesting properties that are natural to assume for the utility functions

we are using, and which are useful in the proofs of the results in the following sections.
It is natural to assume for each customer i that U i(x1; : : : ; xJ ; b1; : : : ; bJ) is increasing in
the rates xj, and decreasing in the blocking probabilities bj. We also assume that U i

is continuously di�erentiable in all of its arguments and is concave in each xj. Another
property that is natural to assume is that if xj(1� bj) is the `e�ective' rate of call arrivals
(accepted calls of type j) then a customer prefers the same e�ective rate to occur with
less blocking, since blocking can only produce extra overhead. Formally, if xj(1 � bj) =
x0j(1� b0j) with bj � b0j, then

U i(x1; : : : ; xJ ; b1; : : : ; bJ) � U i(x01; : : : ; x
0
J ; b

0
1; : : : ; b

0
J) : (3)

3. CALCULATION OF BLOCKING PROBABILITIES

In this section we provide asymptotic expressions for the blocking probabilities arising
in the single link model introduced in the previous section. Although we assume that the
system uses the greedy `complete sharing' admission rule (if there are a su�cient number
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of idle circuits at the moment of a call's arrival, then admit the call), our �rst order
asymptotic results hold for more general admission rules as well. It is known that (cf.
[3], [7], [4]), under the complete sharing admission rule the stationary distribution of this
system is of product form. This typically reduces the calculation of blocking probabilities
to the determination of normalizing constants. In this case an e�cient one dimensional
recursion to calculate Bj is provided by Kaufman [3] and Roberts [7].

3.1. First Order Asymptotics

We consider a sequence of systems, indexed by N , where fAj; �j; 1 � j � Jg are held
�xed and gj(N)!1 as N !1, 1 � j � J . Assume that gj(N)=N ! �j, 0 < �j <1,

as N !1, and let � =
PJ

j=1 �jAj�j. For � > 1 let b(�) denote the unique root in [0; 1)

of
PJ

j=1 �jAj�j(1 � b)Aj = 1. For 0 � x � 1 let b(x) = 0. Then, as a special case of a
result of Kelly [5] for a network setting we have

Bj(N)! B̂j(�) � 1� (1� b(�))Aj as N !1; 1 � j � J : (4)

3.2. Second Order Asymptotics

We assume that � =
PJ

j=1 �jAj�j = 1, and

gj(N) = �jN + �j
p
N + o(

p
N); �1 < �j <1; 1 � j � J : (5)

Using results of Hunt and Kelly [1], it was shown in Reiman [6] that

p
NBj(N)! Ajb

� ; (6)

where b� = ��1h(�=�), � =
PJ

j=1 �jAj�j, �2 =
PJ

j=1A
2
j�j�j, h(x) = �(x)

1��(x) , �(x) =
1p
2�
e�x

2 2, and �(x) =
R x
�1 �(z) dz.

4. MAXIMIZING LINK REVENUE

4.1. First Order Asymptotic Analysis

Consider the model of the single link introduced in Section 2, and let the arrival rates
be parametrized by N , so that gj(N;w) is the arrival rate of type j calls when the price
vector is w, for the link with N circuits. Suppose that

N�1gj(N;w)! gj(w) ; (7)

and let �(w) =
PJ

j=1 gj(w)�jAj. As before let Bj(N ; g(N)) denote the blocking proba-
bility of type j with N circuits and arrival rates g1(N); : : : ; gJ(N), where for simplicity
we omitted the dependence on the price vector w.
We now derive the asymptotic version of the optimization problem in (1). The revenue

of the Nth system is

rN (w) =
JX

j=1

wjgj(N;w)[1� Bj(N ; g1(N;w); : : : ; gJ(N;w))] ; (8)
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and if the normalized revenue is de�ned as ~rN(w) = N�1rN(w), by substituting the
asymptotic form of the blocking probability from (4), we obtain

lim
N!1

~rN(w) = ~r(w) =
JX

j=1

wjgj(w)

 
1� b

 
JX

j=1

gj(w)�jAj

!!Aj

: (9)

We next show that the asymptotic form of the MLR problem that results from (9) can
be further simpli�ed, since as we show, under the optimal price � � 1 always holds, i.e.,
the link will never be overloaded.

Proposition 1 If w� maximizes ~r(w), then �(w�) � 1.

Proof: To simplify notation we de�ne a normalized version of the quantities wj and gj,
where the corresponding quantities are de�ned on a per unit of resource usage basis:

ĝj = Aj�jgj; ŵj =
wj

Aj�j
: (10)

Assume that the optimum occurs for � > 1 and has the value R�. With no loss of
generality let K be the number of distinct prices involved (K � J), and de�ne by lk the
set of call types priced with ŵlk , where ŵl1 < � � � < ŵlK . Intuitively, per unit of resource
consumption the calls in lk generate less revenue for the network than calls in lk+1.
Now consider the same system where we apply trunk reservation in such a manner

that lk has `lower priority' than lk+1. Let k� be such that
PlK

lk=l
�

k

P
j2lk ĝj(ŵ) � 1, andPlK

lk=lk�+1

P
j2lk ĝj(ŵ) < 1. It was shown by Hunt and Laws [2] that there are trunk

reservation levels such that, with � > 1, Bj(N) ! Bj, 1 � j � J , where for j 2 lk with
k < k� Bj = 1; for j 2 lk with k > k� Bj = 0; and for k = k� 0 � Bj < 1. Clearly in this
system the revenue is not less than R� since we admit more expensive calls with higher
priority.
We now increase ŵl1 equally for all call types in l1, keeping other prices �xed, until

either � becomes 1, or ŵl1 = ŵl2 . By (A3) � decreases as ŵl1 increases. If � = 1 is
reached �rst, then we have strictly increased the revenue since it must be the case that
k� = 1 and (i) the load corresponding to the more expensive types has not decreased
because of substitution, (ii) the e�ective load of l1 being

P
j2l1 ĝj(ŵ)(1� Bl1) has either

remained the same if no substitution occurred (since the new rates ĝ0j at ŵ
0
l1
are such that

ĝ0j = ĝj(ŵ)(1 � Bl1)), or has been substituted by tra�c which generates proportionally
more reward. If ŵl1 = ŵl2 occurs �rst, then the revenue is also not decreased, since,
because of substitution, the rates of more expensive calls have not been decreased, and
since these �ll the system, we maintain the rate of revenue we had before. In this case
we merge the sets l1 and l2, and repeat the procedure for the K � 1 remaining distinctly
priced sets. Note that the above argument about increasing the e�ective arrival rates of
more expensive calls is particularly important for the type l�k which could be \pushed out"
of the system by more expensive types since these might expand because of substitution.
In any case the e�ective part (the proportion that is not blocked) of the rate of l�k that
generates revenue with ŵlk� is being replaced by rates of calls that are charged higher
prices (per unit of resource usage).
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Eventually we will either satisfy the condition � = 1, or have a price for all call types
of ŵlK . If the latter is true, then by increasing the price we will eventually also satisfy
� = 1 by (A4). In any case the corresponding reward will be strictly larger than R�.
We must observe that the sequence of intermediate systems are not comparable with the
original one since these use trunk reservation, which is one of the causes for producing
higher revenue. On the other hand, the �nal system which operates with � = 1 is criti-
cally loaded, and hence if we switch our policy to complete sharing we will maintain zero
blocking probability by (4). Hence the revenue in this last system will be equal to the
one obtained with trunk reservation, which is strictly greater than the initial one. This
completes our argument.

Consider the following non-linear programs

ProgramNMLR : maximize
JX

j=1

wjgj(w) subject to �(w) � 1 ; (11)

Program I : maximize
JX

j=1

wjgj(w) ; (12)

Program II : maximize
JX

j=1

wjgj(w) subject to �(w) = 1 ; (13)

and let ( �I ;w
�
I), ( 

�
II ;w

�
II) be the corresponding pairs of the optimal value and argument

for the programs I and II respectively. Then if the function
PJ

j=1wjgj(w) is concave,
we obtain the following further simpli�cation.

Corollary 1.1 If �(w�
I) < 1 then the solution of NMLR is ( �I ;w

�
I). If �(w�

I) � 1 then
the solution of NMLR is ( �II ;w

�
II).

4.2. Second Order Asymptotic Analysis

The �rst order analysis of the previous section yielded (in Proposition 2) �(w�) � 1.
When �(w�) = 1 it is possible to carry out a more sensitive analysis. Let

wN = w� +N�1=2z (14)

for z 2 R
J . In addition to (7), we now assume that the second order partial derivatives

of g are bounded in a neighborhood of w�. Then Taylor's Theorem yields, for 1 � j � J ,

gj(wN) = gj(w
�) +N�1=2

JX
i=1

zi
@gj
@wi

(w�) + o(N�1=2) : (15)

With arrival rates as given in (15), we can use (6) to obtain

p
NBj (N ; gi(N;wN); : : : ; gJ(N;wN))! Ajb

�(z) ; (16)
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where b�(z) = ��1h(�=�), �2 =
PJ

j=1A
2
jgj(w

�)�j, and

� =
JX

j=1

Aj�j

 
JX
i=1

zi
@gj
@wi

(w�)

!
: (17)

Let r̂N(z) = N�1=2 (rN(wN)� rN(w
�)). Combining (8) with (14), (15), and (16), we

obtain

r̂N (z)! r̂(z) =
JX

j=1

"
zjgj(w

�) + w�j

JX
i=1

zi
@gj
@wi

(w�)� w�jgj(w
�)Ajb

�(z)

#
: (18)

The entire second order analysis is predicated on the assumption that �(w�) = 1. Thus
w� solves Program II, given by (13). Solving Program II with a Lagrangian analysis,
allows us (after some manipulation) to conclude that

r̂(z) = �
JX
i=1

JX
j=1

ziAj�j
@gj(w

�)

@wi
�

JX
j=1

w�jgj(w
�)Ajb

�(z) :

Note that we can write r̂(z) = f(�(z)) � ��(z) � b̂(�(z))
PJ

j=1w
�
jgj(w

�)Aj, where �

is given in (17) and b̂(�) = ��1h(�=�). Thus, the second order optimization problem,
which entails the maximization of r̂(z) over z 2 R

J , can be reduced to the problem of
maximizing f(�) over � 2 R. Given a �� such that f(��) � f(�) for any � 2 R, we are
free to choose any z� for which �(z�) = ��.
By the Lagrangian analysis, � � 0. In addition, b̂ is strictly convex and strictly in-

creasing. When � > 0 there is a unique (�nite) �� that maximizes f(�). When � = 0 this
analysis yields �� = �1, which implies that an even more sensitive analysis is needed to
deal with this case. We do not pursue this issue further in this paper.

5. MAXIMIZING SOCIAL WELFARE

The problem of the social planner is to choose the arrival rates gij, 1 � i � I, 1 � j � J ,
in order to maximize the sum of the utilities of all the customers (social welfare). An
implicit way to do this is through prices: the social planner posts prices for each of the
call types, under which the customers, by doing their local optimization, will choose the
arrival rates that correspond to the optimal solution of the social welfare problem. The
�rst question we answer is if such a set of prices exists.
Consider the social welfare function W =

PI
i=1 U

i(gi1; : : : ; g
i
J ;B1; : : : ; BJ), where Bj =

Bj(g1; : : : ; gJ) is the blocking probability of calls of type j, and gj =
PI

i=1 g
i
j is total

arrival rate of calls of type j. Then at the optimum

@W

@gij
=
@U i

@gij
+

IX
k=1

JX
l=1

@Uk

@Bl

@Bl

@gij
= 0 ; 1 � i � I; 1 � j � J;

and since Bl depends on gij through the sum gj =
PI

i=1 g
i
j, it follows that the above

condition becomes

@U i

@gij
+

IX
k=1

JX
l=1

@Uk

@Bl

@Bl

@gj
= 0 ; 1 � i � I; 1 � j � J: (19)
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Let w1; : : : ; wJ be the prices charged to the customers for the accepted calls (which are
not blocked). Then customer i will choose arrival rates that solve the local optimization
problem

max
gij ;j2J

U i(gi1; : : : ; g
i
J ;B1; : : : ; BJ)�

JX
k=1

wkg
i
k(1�Bk) ; (20)

where the values of the blocking probabilities Bk are those corresponding to the current
operating point of the link and are considered as given (measured). This is an important
assumption which leads to the above de�nition of the local optimization problem. The
case in which the users have knowledge of the derivatives of the blocking probabilities
with respect to their arrival rates leads to a di�erent optimization problem, in which
such prices might not exist. In any case, if the size of the system is large compared to
individual users, then a reasonable approximation is that an individual user cannot have
a signi�cant e�ect on the blocking that takes place, and hence such a user is faced with
solving (20).
The arrival rates chosen will satisfy the conditions

@U i

@gij
� wj(1� Bj) = 0; 1 � j � J; 1 � i � I : (21)

Observe now that if we choose the prices w�j so that

w�j = �(1�Bj)
�1

IX
k=1

JX
l=1

@Uk

@Bl

@Bl

@gj
; 1 � j � J; (22)

we are guaranteed that the global conditions (19) and the local conditions (21) are equiv-
alent, and hence the optimal allocation of arrival rates forMSW is an equilibrium for the
system of prices (22). Note that the above prices are \congestion" prices, in the sense that
a customer pays the rest of the customers (including himself) for the marginal decrease
of their utility due to the increase of blocking that is produced because of his increased
rate of requests.
The form of (22) suggests that in order to compute the above prices we need the explicit

knowledge of the utility functions of the customers. An interesting observation is that
if the customers of the network fall into a small number of generic classes for which the
utilities can be assumed known, then the network operator only needs to know the number
of users of each particular class to compute the above prices.

5.1. First Order Asymptotic Analysis

We consider the following asymptotic regime. There are I classes of customers and J
types of calls, with these quantities held �xed. In the system with N circuits we have Ni

customers of class i 2 I, where Ni = bN�ic,
PI

i=1 �i = �, 0 < � <1. A customer of class
i 2 I has a utility function U i as in section 2, which is strictly increasing and concave in
gij, j 2 J . Then the problem of maximizing the social welfare function is

max
gikj ;i2I;k2Ni;j2J

W =
IX

i=1

NiX
k=1

U i(gik1 ; : : : ; g
ik
J ;B1; : : : ; BJ) ; (23)
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and since the utilities are concave in gikj , at any optimum we must have gikj = gik
0

j ,
1 � k; k0 � Ni, 1 � i � I. Hence if we denote the above arrival rates by gij, (23) is
equivalent to

max
gij ;i2I;j2J

W =
IX

i=1

NiU
i(gi1; : : : ; g

i
J ;B1; : : : ; BJ) :

Now, after normalizing by dividing by N and taking the limit as N !1, we obtain that
in the limit the optimization problem for ~W = limN!1N�1W becomes

max
gij ;i2I;j2J

~W =
IX

i=1

�iU
i(gi1; : : : ; g

i
J ; B̂1(�); : : : ; B̂J(�)) ; (24)

where B̂j(�) is given by (4), using �j = gj =
PI

i=1 �ig
i
j.

If property (3) holds, the following proposition states that (24) can be further simpli�ed,
since it never pays to have blocking.

Proposition 2 If yij, i 2 I, j 2 J maximize ~W in (24), and (3) holds, then � = 1.

Proof: Assume �rst that yij, i 2 I, j 2 J are such that � < 1. Then the blocking

probabilities from (4) are all zero, and ~W =
PI

i=1 �iU
i(yi1; : : : ; y

i
J ; 0; : : : ; 0). Now since the

utilities are increasing functions of the arrival rates, we can always increase some rate,
say yij, while keeping � < 1, and since the blocking probabilities will stay zero, we will get

a strict increase of ~W , which shows that optimality can not be achieved when � < 1.
Suppose now that yij, i 2 I, j 2 J are such that � > 1. Then the blocking probabilities

from (4) are all positive. Consider the point yij(1 � Bj), i 2 I, j 2 J . Clearly at this
point � = 1, and hence the blocking probabilities are zero. Hence by using (3) we get that
at this new point the social welfare is not decreased from ~W . This completes the proof.

Corollary 2.1 The maximization of the social welfare corresponds to the program

maximize
PI

i=1 �iU
i(gi1; : : : ; g

i
J ; 0; : : : ; 0) (25)

subject to
PJ

j=1

PI
i=1 �ig

i
j�jAj = 1: (26)

Solving (26) is now straightforward. In order to obtain a better insight, we use the
normalized version of gij as de�ned in (10). Then (26) becomes

maximize
PI

i=1 �iÛ
i(ĝi1; : : : ; ĝ

i
J ; 0; : : : ; 0) (27)

subject to
PJ

j=1

PI
i=1 �iĝ

i
j = 1: (28)

A simple application of Lagrangian methods indicates that at the optimum @Û i

@ĝij
= w for

all i 2 I, j 2 J , and that this is achieved with w being the price per request of all types.
Because of the normalization we have used, this implies that the optimal price is such
that requests are charged proportionally to the amount of resources they consume. (This
will typically not be the case in the revenue maximization problem unless the demand
functions have a special structure.)
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5.2. Second Order Asymptotic Analysis

As in the revenue maximization problem, it is possible to carry out a more sensitive
analysis for the social welfare maximization as well. As seen in Proposition 3, � = 1
always holds in the �rst order asymptotic analysis for social welfare maximization.
Let

gij(N) = gij +N�1=2zij; 1 � i � I; 1 � j � J ; (29)

where fgij; 1 � i � I; 1 � j � Jg is a solution of (25) and (26). By (6) we obtain

p
NBj(Njgi(N); : : : ; gJ(N))! Ajb

�(z) ; (30)

where z = (zij; 1 � i � I; 1 � j � J) 2 R
I�J , b�(z) = ��1h(�(z)=�), �2 = �A2

jgj�j, and

�(z) =
PJ

j=1Aj�j
PI

i=1 �iz
i
j. We assume that the second order partial derivatives of U i

are bounded in a neighborhood of (gi1; : : : ; g
i
J ; 0; : : : ; 0). Then again applying Taylor's

Theorem and de�ning ŴN(z) = N�1=2 (W (g(N))�W (g)) yields

ŴN (z)! Ŵ (z) =
IX

i=1

�i

JX
j=1

@U i

@gij
zij + b�(z)

IX
i=1

�i

JX
j=1

Aj
@U i

@Bj
: (31)

From the �rst order asymptotic analysis, @U i

@gij
= w�jAj, 1 � i � I; 1 � j � J for some

0 < w <1. Thus we can write

Ŵ (z) = w�(z) + b̂ (�(z))
IX

i=1

JX
j=1

�iAj
@U i

@Bj
;

reducing the second order optimization problem to a one dimensional unconstrained prob-
lem as in Section 4.2.

REFERENCES

1. P. J. Hunt and F. P. Kelly. On critically loaded loss networks. Adv. Appl. Prob.,
21:831{841, 1989.

2. P. J. Hunt and C. N. Laws. Optimization via trunk reservation in single resource loss
systems under heavy tra�c. Ann. Appl. Prob., 7:1058{1079, 1997.

3. J. S. Kaufman. Blocking in a shared resource environment. IEEE Trans. Comm.,
COM-29:1474{1481, 1981.

4. F. P. Kelly. Reversibility and Stochastic Networks. Wiley, New York, 1979.
5. F. P. Kelly. Blocking probabilities in large circuit switched networks. Adv. Appl.

Prob., 18:473{505, 1986.
6. M. I. Reiman. A critically loaded multiclass Erlang loss system. Queueing Syst.,

9:65{82, 1991.
7. J. W. Roberts. A service system with heterogeneous user requirements { application to

multi-services telecommunications systems. In Performance of Data Communication
Systems and Their Applications. North-Holland, 1981).


